Bottom-fill process for flip-chip applications

Flip chip (FC) technology is a packaging method in which the chip is directly attached to the substrate, which has the advantages of high density, high performance and low cost. However, due to the coefficient of thermal expansion (CTE) mismatch between the chip and the substrate, the solder joints are subjected to large thermal stresses when the temperature changes, leading to fatigue damage and failure. To improve the reliability of solder joints, a common method is to inject a polymer material, called underfill, between the chip and the substrate. Underfill improves the stress distribution in the solder joint, reduces the strain amplitude in the solder joint, and extends the thermal fatigue life of the solder joint.

Figure 1. Underfill process

Underfill is a liquid encapsulant, typically an epoxy resin heavily filled with SiO2, that is used between the chip and the substrate after flip chip interconnections. After curing, the hardened underfill has a high modulus, low CTE to match the solder joints, low moisture absorption, and good adhesion to the chip and substrate. Thermal stresses on the solder joints are redistributed between the chip, underfill, substrate and all solder joints, rather than being concentrated on the peripheral solder joints. The application of underfill has been proven to reduce the most important solder joint strain levels to 0.10-0.25 of the strain of an unencapsulated solder joint. as a result, underfill can increase the fatigue life of solder joints by a factor of 10 to 100. In addition, it protects the solder joints from environmental attack. Underfill is a practical solution for expanding the use of flip chip technology from ceramic to organic substrates and from high-end to cost-sensitive products.

Figure 2. Flip Chip Process with Underfill

Advances in flip chip technology have led to the development of underfill processes and underfill materials. Figure 2 illustrates the process steps of a flip chip using the underfill process. Separate flux dispensing and cleaning steps are required before and after the chip is assembled. After the chip is assembled on the substrate, the unfilled material is dispensed and dragged into the gap between the chip and the substrate.

Foreign material control before underfill application

Bottom filler adhesive before sizing need to confirm that the board and filler surface without foreign objects and a large number of flux residue, more flux residue will lead to adhesive attached to the flux residue, subsequent use of the process of flux residue volatilization, softening, mutation directly affect the mechanical properties of the adhesive, which affects the reliability of the product. The standard bottom filling sizing process requires PCBA cleaning and drying, and then dispensing curing.

The advantages of the bottom filling process are:

  1. Improve the reliability of the solder joints to extend the service life of the product;

  2. Protect the solder joints from environmental erosion, improve product corrosion resistance;

  3. Reduce the thermal stress between the chip and the substrate, improve the product's resistance to thermal cycling;

  4. Enhance the adhesion between the chip and the substrate to improve the impact resistance and vibration resistance of the product.

Disadvantages of the bottom filling process:

  1. Increase the cost and complexity of packaging, requiring additional equipment and materials;

  2. Need to select appropriate bottom-filling materials and parameters to match the characteristics of the chip and substrate to avoid failure modes such as residual stress, cracks, corrosion and voids;

  3. Difficult to repair or rework the package, requiring the removal of the bottom filler in order to inspect or replace the solder joints;

  4. may affect the electrical properties of the chip, such as signal delay, crosstalk, noise, etc..

Translated with DeepL.com (free version)

相关推荐
三佛科技-134163842126 天前
LP3799FAES-B 反激式电源控制器芯片 典型应用电路
单片机·嵌入式硬件·物联网·智能家居·pcb工艺
三佛科技-134163842127 天前
点焊机方案开发,点焊机MCU控制方案设计
单片机·嵌入式硬件·智能家居·pcb工艺
联系QQ19226389 天前
基于MATLAB的单闭环直流调速系统设计 本设计包括设计报告,仿真程序,电气接线图
pcb工艺
Trunktren9 天前
PCB软硬结合板全流程设计
笔记·硬件工程·pcb设计·pcb工艺·allegro
PCBA加工_安徽英特丽9 天前
PCB设计布局知识:元件排列规则
pcb工艺
三佛科技-1341638421210 天前
FT8353系列(FT8353A/B/C/CD/DD/K/KD/PD)隔离型LED恒流驱动IC芯片 典型应用电路
单片机·物联网·智能家居·pcb工艺
三佛科技-1341638421210 天前
LN8K05A/B/C_5V非隔离AC-DC电源芯片 典型应用场景、典型电路、与阻容降压的对比分析
单片机·嵌入式硬件·物联网·智能家居·pcb工艺
三佛科技-1341638421213 天前
BP85958D输出12V400MA智能家居电源芯片(典型应用电路、替代型号HN32512)
单片机·嵌入式硬件·物联网·智能家居·pcb工艺
三佛科技-1341638421214 天前
BP85928D贴片SOP8 5V500MA智能家居开关电源芯片 (典型应用电路、替代方案FT8451B/FT8451H)
单片机·嵌入式硬件·物联网·智能家居·pcb工艺
猫猫的小茶馆14 天前
【ARM】内核移植(编译)
linux·arm开发·stm32·单片机·嵌入式硬件·mcu·pcb工艺