Bottom-fill process for flip-chip applications

Flip chip (FC) technology is a packaging method in which the chip is directly attached to the substrate, which has the advantages of high density, high performance and low cost. However, due to the coefficient of thermal expansion (CTE) mismatch between the chip and the substrate, the solder joints are subjected to large thermal stresses when the temperature changes, leading to fatigue damage and failure. To improve the reliability of solder joints, a common method is to inject a polymer material, called underfill, between the chip and the substrate. Underfill improves the stress distribution in the solder joint, reduces the strain amplitude in the solder joint, and extends the thermal fatigue life of the solder joint.

Figure 1. Underfill process

Underfill is a liquid encapsulant, typically an epoxy resin heavily filled with SiO2, that is used between the chip and the substrate after flip chip interconnections. After curing, the hardened underfill has a high modulus, low CTE to match the solder joints, low moisture absorption, and good adhesion to the chip and substrate. Thermal stresses on the solder joints are redistributed between the chip, underfill, substrate and all solder joints, rather than being concentrated on the peripheral solder joints. The application of underfill has been proven to reduce the most important solder joint strain levels to 0.10-0.25 of the strain of an unencapsulated solder joint. as a result, underfill can increase the fatigue life of solder joints by a factor of 10 to 100. In addition, it protects the solder joints from environmental attack. Underfill is a practical solution for expanding the use of flip chip technology from ceramic to organic substrates and from high-end to cost-sensitive products.

Figure 2. Flip Chip Process with Underfill

Advances in flip chip technology have led to the development of underfill processes and underfill materials. Figure 2 illustrates the process steps of a flip chip using the underfill process. Separate flux dispensing and cleaning steps are required before and after the chip is assembled. After the chip is assembled on the substrate, the unfilled material is dispensed and dragged into the gap between the chip and the substrate.

Foreign material control before underfill application

Bottom filler adhesive before sizing need to confirm that the board and filler surface without foreign objects and a large number of flux residue, more flux residue will lead to adhesive attached to the flux residue, subsequent use of the process of flux residue volatilization, softening, mutation directly affect the mechanical properties of the adhesive, which affects the reliability of the product. The standard bottom filling sizing process requires PCBA cleaning and drying, and then dispensing curing.

The advantages of the bottom filling process are:

  1. Improve the reliability of the solder joints to extend the service life of the product;

  2. Protect the solder joints from environmental erosion, improve product corrosion resistance;

  3. Reduce the thermal stress between the chip and the substrate, improve the product's resistance to thermal cycling;

  4. Enhance the adhesion between the chip and the substrate to improve the impact resistance and vibration resistance of the product.

Disadvantages of the bottom filling process:

  1. Increase the cost and complexity of packaging, requiring additional equipment and materials;

  2. Need to select appropriate bottom-filling materials and parameters to match the characteristics of the chip and substrate to avoid failure modes such as residual stress, cracks, corrosion and voids;

  3. Difficult to repair or rework the package, requiring the removal of the bottom filler in order to inspect or replace the solder joints;

  4. may affect the electrical properties of the chip, such as signal delay, crosstalk, noise, etc..

Translated with DeepL.com (free version)

相关推荐
MARIN_shen13 小时前
Marin说PCB之POC电路layout设计仿真案例---06
网络·单片机·嵌入式硬件·硬件工程·pcb工艺
白林一9 天前
AD 输出PCB pdf 可以搜索元器件位置的输出方法
嵌入式硬件·pdf·pcb工艺
Modest1y13 天前
VAS1260Q奇力LED驱动芯片DCDC降压恒流可替代Diodes8860
单片机·嵌入式硬件·汽车·硬件工程·pcb工艺
willhuo15 天前
可编程4G+GPS网关
linux·自动化·硬件工程·lua·visual studio·pcb工艺
lieban22 天前
猎板 PCB特殊工艺:铸就电子行业核心竞争力新高度
pcb工艺
7yewh23 天前
嵌入式硬件实战提升篇(三)商用量产电源设计方案 三路电源输入设计 电源管理 多输入供电自动管理 DCDC降压
嵌入式硬件·硬件架构·soc·pcb工艺·电源·dcdc·原理图设计
7yewh1 个月前
嵌入式硬件杂谈(六)充电器原理 线性电源 开关电源 反激电源原理
单片机·嵌入式硬件·mcu·物联网·硬件架构·硬件工程·pcb工艺
7yewh1 个月前
嵌入式硬件实战基础篇(三)-四层板PCB设计-步进电机驱动(TMC2208/TMC2209)
驱动开发·嵌入式硬件·mcu·物联网·硬件架构·硬件工程·pcb工艺
7yewh1 个月前
嵌入式硬件杂谈(四)-高速板PCB设计 高速信号全面讲解 蛇形线 等长线 差分对 阻抗对
驱动开发·嵌入式硬件·mcu·物联网·硬件工程·pcb工艺·精益工程
7yewh1 个月前
嵌入式硬件电子电路设计(七)稳压二极管-齐纳二极管-齐纳击穿全面详解
stm32·嵌入式硬件·mcu·物联网·硬件架构·硬件工程·pcb工艺