Bottom-fill process for flip-chip applications

Flip chip (FC) technology is a packaging method in which the chip is directly attached to the substrate, which has the advantages of high density, high performance and low cost. However, due to the coefficient of thermal expansion (CTE) mismatch between the chip and the substrate, the solder joints are subjected to large thermal stresses when the temperature changes, leading to fatigue damage and failure. To improve the reliability of solder joints, a common method is to inject a polymer material, called underfill, between the chip and the substrate. Underfill improves the stress distribution in the solder joint, reduces the strain amplitude in the solder joint, and extends the thermal fatigue life of the solder joint.

Figure 1. Underfill process

Underfill is a liquid encapsulant, typically an epoxy resin heavily filled with SiO2, that is used between the chip and the substrate after flip chip interconnections. After curing, the hardened underfill has a high modulus, low CTE to match the solder joints, low moisture absorption, and good adhesion to the chip and substrate. Thermal stresses on the solder joints are redistributed between the chip, underfill, substrate and all solder joints, rather than being concentrated on the peripheral solder joints. The application of underfill has been proven to reduce the most important solder joint strain levels to 0.10-0.25 of the strain of an unencapsulated solder joint. as a result, underfill can increase the fatigue life of solder joints by a factor of 10 to 100. In addition, it protects the solder joints from environmental attack. Underfill is a practical solution for expanding the use of flip chip technology from ceramic to organic substrates and from high-end to cost-sensitive products.

Figure 2. Flip Chip Process with Underfill

Advances in flip chip technology have led to the development of underfill processes and underfill materials. Figure 2 illustrates the process steps of a flip chip using the underfill process. Separate flux dispensing and cleaning steps are required before and after the chip is assembled. After the chip is assembled on the substrate, the unfilled material is dispensed and dragged into the gap between the chip and the substrate.

Foreign material control before underfill application

Bottom filler adhesive before sizing need to confirm that the board and filler surface without foreign objects and a large number of flux residue, more flux residue will lead to adhesive attached to the flux residue, subsequent use of the process of flux residue volatilization, softening, mutation directly affect the mechanical properties of the adhesive, which affects the reliability of the product. The standard bottom filling sizing process requires PCBA cleaning and drying, and then dispensing curing.

The advantages of the bottom filling process are:

  1. Improve the reliability of the solder joints to extend the service life of the product;

  2. Protect the solder joints from environmental erosion, improve product corrosion resistance;

  3. Reduce the thermal stress between the chip and the substrate, improve the product's resistance to thermal cycling;

  4. Enhance the adhesion between the chip and the substrate to improve the impact resistance and vibration resistance of the product.

Disadvantages of the bottom filling process:

  1. Increase the cost and complexity of packaging, requiring additional equipment and materials;

  2. Need to select appropriate bottom-filling materials and parameters to match the characteristics of the chip and substrate to avoid failure modes such as residual stress, cracks, corrosion and voids;

  3. Difficult to repair or rework the package, requiring the removal of the bottom filler in order to inspect or replace the solder joints;

  4. may affect the electrical properties of the chip, such as signal delay, crosstalk, noise, etc..

Translated with DeepL.com (free version)

相关推荐
技术流浪者2 天前
PCB设计(十九)PCB设计中NPN/PNP选型策略
单片机·嵌入式硬件·硬件工程·pcb工艺
猎板PCB 邹亮9 天前
材料创新与工艺升级——猎板PCB引领高频阻抗板制造革命
制造·pcb工艺
技术流浪者10 天前
PCB设计实践(十二)PCB设计电容选型:功能、材质、规则
硬件工程·材质·pcb工艺
hfdz_004214 天前
USB接口的PCB设计
嵌入式硬件·硬件工程·pcb工艺
农民也会写代码17 天前
厚铜pcb生产厂家哪家好?
制造·pcb工艺·pcb
攻城狮-鹏哥18 天前
DRV8301 三相电机驱动芯片的硬件参数与应用设计
驱动开发·单片机·嵌入式硬件·mcu·硬件架构·dsp开发·pcb工艺
长流小哥20 天前
PCB设计实战技巧宝典:从库管理到布线优化的全流程解析
pcb工艺
猎板阿权24 天前
高可靠性厚铜板制造的关键设备与工艺投入
pcb工艺
农民也会写代码25 天前
国内多层PCB供应商优选指南
制造·pcb工艺
码小文25 天前
Cadence学习笔记之---原理图设计基本操作
笔记·单片机·学习·硬件工程·pcb工艺