Spark 性能调优——分布式计算

前言


分布式计算的精髓,在于如何把抽象的计算流图,转化为实实在在的分布式计算任务,然后以并行计算的方式交付执行。今天这一讲,我们就来聊一聊,Spark 是如何实现分布式计算的。分布式计算的实现,离不开两个关键要素,一个是进程模型,另一个是分布式的环境部署。接下来,我们先去探讨 Spark 的进程模型,然后再来介绍 Spark 都有哪些分布式部署方式。

触发计算流程图


函数


Scala 复制代码
##统计单词的次数

import org.apache.spark.rdd.RDD
 
// 这里的下划线"_"是占位符,代表数据文件的根目录,hdfs的目录地址
val rootPath: String = "/user/hadoop/wikiOfSpark.txt"
val file: String = s"${rootPath}"
 
// 读取文件内容
val lineRDD: RDD[String] = spark.sparkContext.textFile(file)
 
// 以行为单位做分词
val wordRDD: RDD[String] = lineRDD.flatMap(line => line.split(" "))
val cleanWordRDD: RDD[String] = wordRDD.filter(word => !word.equals(""))
 
// 把RDD元素转换为(Key,Value)的形式
val kvRDD: RDD[(String, Int)] = cleanWordRDD.map(word => (word, 1))
// 按照单词做分组计数
val wordCounts: RDD[(String, Int)] = kvRDD.reduceByKey((x, y) => x + y)
 
// 打印词频最高的5个词汇
wordCounts.map{case (k, v) => (v, k)}.sortByKey(false).take(5)


##########################
//统计相邻单词共现的次数


假设,我们再次改变 Word Count 的计算逻辑,由原来统计单词的计数,改为统计相邻单词共现的次数。

import org.apache.spark.rdd.RDD
 
// 这里的下划线"_"是占位符,代表数据文件的根目录,hdfs的目录地址
val rootPath: String = "/user/hadoop/wikiOfSpark.txt"
val file: String = s"${rootPath}"
 
// 读取文件内容
val lineRDD: RDD[String] = spark.sparkContext.textFile(file)

// 以行为单位提取相邻单词
val wordPairRDD: RDD[String] = lineRDD.flatMap( line => {
  // 将行转换为单词数组
  val words: Array[String] = line.split(" ")
  // 将单个单词数组,转换为相邻单词数组
  for (i <- 0 until words.length - 1) yield words(i) + "-" + words(i+1)
})

val cleanWordRDD: RDD[String] = wordPairRDD.filter(word => !word.equals(""))
 
// 把RDD元素转换为(Key,Value)的形式
val kvRDD: RDD[(String, Int)] = cleanWordRDD.map(word => (word, 1))
// 按照单词做分组计数
val wordCounts: RDD[(String, Int)] = kvRDD.reduceByKey((x, y) => x + y)
 
// 打印词频最高的5个词汇
wordCounts.map{case (k, v) => (v, k)}.sortByKey(false).take(5)



##对原来单词的计数,改为对单词的哈希值计数,在这种情况下。我们代码实现需要做哪些改动。

import org.apache.spark.rdd.RDD
import java.security.MessageDigest
 
// 这里的下划线"_"是占位符,代表数据文件的根目录,hdfs的目录地址
val rootPath: String = "/user/hadoop/wikiOfSpark.txt"
val file: String = s"${rootPath}"
 
// 读取文件内容
val lineRDD: RDD[String] = spark.sparkContext.textFile(file)
 
// 以行为单位做分词
val wordRDD: RDD[String] = lineRDD.flatMap(line => line.split(" "))
val cleanWordRDD: RDD[String] = wordRDD.filter(word => !word.equals(""))
// 把普通RDD转换为Paired RDD

 
val kvRDD: RDD[(String, Int)] = cleanWordRDD.map{ word =>
  // 获取MD5对象实例
  val md5 = MessageDigest.getInstance("MD5")
  // 使用MD5计算哈希值
  val hash = md5.digest(word.getBytes).mkString
  // 返回哈希值与数字1的Pair
  (hash, 1)
}
// 按照单词做分组计数
val wordCounts: RDD[(String, Int)] = kvRDD.reduceByKey((x, y) => x + y)
 
// 打印词频最高的5个词汇
wordCounts.map{case (k, v) => (v, k)}.sortByKey(false).take(5)
Scala 复制代码
import org.apache.spark.sql.expressions.Window
import org.apache.spark.sql.functions._
// 创建表
case class SiteViews(site_id: String, date: String, page_view: Int)
val siteViews = Seq(
    SiteViews("a", "2021-05-20", 10),
    SiteViews("a", "2021-05-21", 11),
    SiteViews("a", "2021-05-22", 12),
    SiteViews("a", "2021-05-23", 12),
    SiteViews("a", "2021-05-24", 13),
    SiteViews("a", "2021-05-25", 14),
    SiteViews("a", "2021-05-26", 15),
    SiteViews("b", "2021-05-20", 21),
    SiteViews("b", "2021-05-21", 22),
    SiteViews("b", "2021-05-22", 22),
    SiteViews("b", "2021-05-23", 22),
    SiteViews("b", "2021-05-24", 23),
    SiteViews("b", "2021-05-25", 23),
    SiteViews("b", "2021-05-26", 25)
).toDF() 
// 
Window.partitionBy("column name"|column)
// orderBy的语法
Window.orderBy("column name"|column) 
相关推荐
礼拜天没时间.39 分钟前
Docker 部署分布式 Hadoop(超详细实战版)
linux·hadoop·分布式·docker·容器
良策金宝AI7 小时前
让端子排接线图“智能生成”,良策金宝AI推出变电站二次智能设计引擎
大数据·人工智能·工程设计·变电站ai
a285287 小时前
nginx的重定向
大数据·数据库·nginx
yhdata8 小时前
锁定2032年!区熔硅单晶市场规模有望达71.51亿元,赛道前景持续向好
大数据·人工智能
ASKED_20199 小时前
企业级大模型微调(Fine-tuning)策略
大数据·人工智能·算法
琅琊榜首202010 小时前
AI+编程思维:高质量短剧脚本高效撰写实操指南
大数据·人工智能·深度学习
紫郢剑侠10 小时前
使用Samba服务让kylin| 银河麒麟系统电脑向Windows系统电脑共享文件(下)Windows系统端配置
大数据·kylin
智能零售小白白12 小时前
零售多平台商品数据标准化:从字段混乱到一键同步的技术实践
大数据·零售
龙山云仓12 小时前
No153:AI中国故事-对话毕昇——活字印刷与AI知识生成:模块化思想与信息革
大数据·人工智能·机器学习
雪兽软件12 小时前
什么是大数据?定义、类型、重要性和最佳实践
大数据