神经网络 torch.nn---优化器的使用

torch.optim - PyTorch中文文档 (pytorch-cn.readthedocs.io)

torch.optim --- PyTorch 2.3 documentation

反向传播 可以求出神经网路中每个需要调节参数的梯度(grad ),优化器 可以根据梯度进行调整,达到降低整体误差的作用。下面我们对优化器进行介绍。

构造优化器

python 复制代码
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
optimizer = optim.Adam([var1, var2], lr=0.0001)
  • 选择优化器的算法optim.SGD
  • 之后在优化器中放入模型参数model.parameters(),这一步是必备
  • 还可在函数中设置一些参数,如学习速率 lr=0.01(这是每个优化器中几乎都会有的参数)

调用优化器中的step方法

step()方法就是利用我们之前获得的梯度,对神经网络中的参数进行更新。

python 复制代码
for input, target in dataset:
    optimizer.zero_grad()
    output = model(input)
    loss = loss_fn(output, target)
    loss.backward()
    optimizer.step()
  • 步骤optimizer.zero_grad()是必选的。对每个参数的梯度进行清零

  • 我们的输入经过了模型,并得到了输出output

  • 之后计算输出和target之间的误差 loss

  • 调用误差的反向传播 loss.backwrd更新每个参数对应的梯度

  • 调用optimizer.step()对卷积核中的参数进行优化调整

  • 之后继续进入for循环,使用函数optimizer.zero_grad()对每个参数的梯度进行清零,防止上一轮循环中计算出来的梯度影响下一轮循环。

优化器的使用

优化器中算法共有的参数(其他参数因优化器的算法而异):

  • params: 传入优化器模型中的参数

  • lr: learning rate,即学习速率

关于学习速率

  • 一般来说,学习速率设置得太大 ,模型运行起来会不稳定

  • 学习速率设置得太小 ,模型训练起来会过

  • 建议在最开始 训练模型的时候,选择设置一个较大 的学习速率;训练到后面 的时候,再选择一个较小的学习速率

代码实战:

选择CIFAR10

python 复制代码
import torch
import torchvision
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Linear, Sequential, Flatten
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

dataset = torchvision.datasets.CIFAR10(root='./dataset', train=False, transform=torchvision.transforms.ToTensor(),
                                       download=True)
dataloader = DataLoader(dataset, batch_size=1)

class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.model = Sequential(
            Conv2d(3, 32, kernel_size=5, padding=2),
            MaxPool2d(kernel_size=2),
            Conv2d(32, 32, kernel_size=5, padding=2),
            MaxPool2d(kernel_size=2),
            Conv2d(32, 64, kernel_size=5, padding=2),
            MaxPool2d(kernel_size=2),
            Flatten(),
            Linear(64 * 4 * 4, 64),
            Linear(64, 10)
        )

    def forward(self, x):
        x = self.model(x)
        return x

loss = nn.CrossEntropyLoss()
tudui = Tudui()
optim = torch.optim.SGD(tudui.parameters(), lr=0.01)
for epoch in range(20):
    running_loss = 0.0
    for data in dataloader:
        imgs, targets = data
        outputs = tudui(imgs)
        # print(outputs)
        # print(targets)
        result_loss = loss(outputs, targets)
        optim.zero_grad()
        result_loss.backward()
        optim.step()
        # print(result_loss)
        running_loss = running_loss + result_loss

    print(running_loss)

输出:

总结使用优化器训练的训练套路):

  • 设置损失函数loss function

  • 定义优化器optim

  • 从使用循环dataloader中的数据:for data in dataloder

    • 取出图片imgs,标签targets:imgs,targets=data

    • 将图片放入神经网络,并得到一个输出:output=model(imgs)

    • 计算误差:loss_result=loss(output,targets)

    • 使用优化器,初始化参数的梯度为0:optim.zero_grad()

    • 使用反向传播求出梯度:loss_result.backward()

    • 根据梯度,对每一个参数进行更新:optim.step()

  • 进入下一个循环,直到完成训练所需的循环次数

相关推荐
KuaFuAI7 分钟前
微软推出的AI无代码编程微应用平台GitHub Spark和国产AI原生无代码工具CodeFlying比到底咋样?
人工智能·github·aigc·ai编程·codeflying·github spark·自然语言开发软件
Make_magic16 分钟前
Git学习教程(更新中)
大数据·人工智能·git·elasticsearch·计算机视觉
shelly聊AI20 分钟前
语音识别原理:AI 是如何听懂人类声音的
人工智能·语音识别
源于花海23 分钟前
论文学习(四) | 基于数据驱动的锂离子电池健康状态估计和剩余使用寿命预测
论文阅读·人工智能·学习·论文笔记
雷龙发展:Leah24 分钟前
离线语音识别自定义功能怎么用?
人工智能·音频·语音识别·信号处理·模块测试
4v1d28 分钟前
边缘计算的学习
人工智能·学习·边缘计算
风之馨技术录31 分钟前
智谱AI清影升级:引领AI视频进入音效新时代
人工智能·音视频
sniper_fandc41 分钟前
深度学习基础—Seq2Seq模型
人工智能·深度学习
goomind44 分钟前
深度学习模型评价指标介绍
人工智能·python·深度学习·计算机视觉
youcans_1 小时前
【微软报告:多模态基础模型】(2)视觉理解
人工智能·计算机视觉·大语言模型·多模态·视觉理解