【路径规划】二维Dijkstra启发式改进算法

我们使用了A*算法的启发式(曼哈顿距离)来改进Dijkstra算法的性能。当我们将邻居节点添加到优先队列时,我们使用了distance + heuristic作为优先级,这样我们可以更快地找到通往目标节点的路径。

python 复制代码
import heapq
import numpy as np


def heuristic(a, b):
    (x1, y1) = a
    (x2, y2) = b
    return abs(x1 - x2) + abs(y1 - y2)  # 使用曼哈顿距离作为启发式


def dijkstra_with_a_star_heuristic(graph, start, end):
    # 初始化距离字典,将所有节点设置为无穷大,除了起点
    distances = {position: float('infinity') for position in np.ndindex(graph.shape)}
    distances[start] = 0

    # 优先队列,存储待检查的节点和它们的距离
    pq = [(0, start)]

    while pq:
        # 弹出当前最小距离的节点
        current_distance, current_position = heapq.heappop(pq)

        # 如果已经找到更短的路径到当前节点,则跳过
        if current_distance > distances[current_position]:
            continue

        # 如果到达目标节点,返回路径(这里未实现路径重构)
        if current_position == end:
            return distances[current_position]  # 这里只返回距离,路径重构需要额外工作

        # 遍历当前节点的邻居
        for dx, dy in [(-1, 0), (1, 0), (0, -1), (0, 1)]:
            x2, y2 = current_position[0] + dx, current_position[1] + dy

            # 检查邻居是否在网格内且不是障碍物
            if 0 <= x2 < graph.shape[0] and 0 <= y2 < graph.shape[1] and graph[x2, y2] != 1:
                # 计算到达邻居节点的距离
                distance = current_distance + 1

                # 使用启发式来改进Dijkstra的选择
                priority = distance + heuristic((x2, y2), end)

                # 如果找到更短的路径到邻居节点,则更新距离并添加到优先队列中
                if priority < distances[(x2, y2)]:
                    distances[(x2, y2)] = priority
                    heapq.heappush(pq, (priority, (x2, y2)))

    # 如果没有找到路径到目标节点
    return None
if __name__ == '__main__':


    # 示例用法
    graph = np.array([
        [0, 0, 0, 1, 0],
        [1, 1, 0, 1, 0],
        [0, 0, 0, 0, 0],
        [0, 1, 1, 1, 1],
        [0, 0, 0, 0, 0]
    ])
    start = (0, 0)
    end = (4, 4)

    distance = dijkstra_with_a_star_heuristic(graph, start, end)
    print(f"The shortest distance from {start} to {end} is: {distance}")
相关推荐
chordful10 分钟前
Leetcode热题100-32 最长有效括号
c++·算法·leetcode·动态规划
_OLi_18 分钟前
力扣 LeetCode 459. 重复的子字符串(Day4:字符串)
算法·leetcode·职场和发展·kmp
材料苦逼不会梦到计算机白富美21 分钟前
线性DP 区间DP C++
开发语言·c++·动态规划
Romanticroom25 分钟前
计算机23级数据结构上机实验(第3-4周)
数据结构·算法
白藏y26 分钟前
数据结构——归并排序
数据结构·算法·排序算法
ahadee38 分钟前
蓝桥杯每日真题 - 第12天
c++·vscode·算法·蓝桥杯
好看资源平台38 分钟前
爬虫开发工具与环境搭建——环境配置
爬虫·python
大G哥1 小时前
python 数据类型----可变数据类型
linux·服务器·开发语言·前端·python
zhentiya1 小时前
微积分第五版课后习题答案详解PDF电子版 赵树嫄
算法·pdf
赛丽曼1 小时前
Python中的HTML
python·html