NLP--机器学习

1.定义:机器学习是一种从经验中学习关于某类任务和该任务执行性能衡量参数,并且性能衡量参数会随着经验的增加而提高的计算机程序。机器如何做我们能做的事,这是早期关于机器学习思想的起源。机器学习和程序编码最大的区别之一就是可以在没有明确编程指令来执行任务的情况下做出预测或决策。

2.机器学习三要素:任务,特征和模型。任务是我们需要解决什么样的问题。特征是一种描述事物的测度指标,模型是解决问题的关键,不同模型背后原理也不相同。

3.分类:机器学习分为有监督学习,半监督学习,无监督学习,强化学习和迁移学习。 他们的学习难度是从易到难的。

(1)有监督学习可以看作为有答案学习,通过给定的问题和答案,机器学习不断的学习训练,从而得到最佳的学习效果。

(2)无监督学习是通过没有事先标注好的标签数据,从学习海量数据中,寻找内部规律的方式。

(3)半监督学习是介于无监督学习和有监督学习之间,在训练过程中利用少量的标签数据和大量的未标签数据进行学习。

(4)强化学习是做了一系列的动作以后给出一个估值,告诉你做了这个大概打了多少分,强调的是智能体如何与环境互动,以取得最大化的预期利益。

(5)迁移学习核心是解决一个问题时获得的相关知识,并将这些知识应用于类似的问题。

4.情感分析:机器学习的本质是优化问题,可以分为分类,回归,聚类,降维四类问题。其中情感分析是一个分类问题,分类问题涉及离散输出和有监督学习。

相关推荐
Kenneth風车2 分钟前
【机器学习(九)】分类和回归任务-多层感知机(Multilayer Perceptron,MLP)算法-Sentosa_DSML社区版 (1)11
算法·机器学习·分类
诚威_lol_中大努力中10 分钟前
关于VQ-GAN利用滑动窗口生成 高清图像
人工智能·神经网络·生成对抗网络
中关村科金30 分钟前
中关村科金智能客服机器人如何解决客户个性化需求与标准化服务之间的矛盾?
人工智能·机器人·在线客服·智能客服机器人·中关村科金
逸_34 分钟前
Product Hunt 今日热榜 | 2024-12-25
人工智能
Luke Ewin40 分钟前
基于3D-Speaker进行区分说话人项目搭建过程报错记录 | 通话录音说话人区分以及语音识别 | 声纹识别以及语音识别 | pyannote-audio
人工智能·语音识别·声纹识别·通话录音区分说话人
DashVector1 小时前
如何通过HTTP API检索Doc
数据库·人工智能·http·阿里云·数据库开发·向量检索
说私域1 小时前
无人零售及开源 AI 智能名片 S2B2C 商城小程序的深度剖析
人工智能·小程序·零售
Calvin8808281 小时前
Android Studio 的革命性更新:Project Quartz 和 Gemini,开启 AI 开发新时代!
android·人工智能·android studio
Jamence2 小时前
【深度学习数学知识】-贝叶斯公式
人工智能·深度学习·概率论
feifeikon2 小时前
机器学习DAY4续:梯度提升与 XGBoost (完)
人工智能·深度学习·机器学习