DNN模型介绍

前言:最近在给小朋友做一个项目,通过图片识别动物;发现训练后显示最佳模型是DNN模型,因此在此记录一下搜索内容:

DNN,全称Deep Neural Networks,即深度神经网络,是一种深度学习模型。以下是对DNN的详细解释:

  1. 基本概念
    • DNN是由多层神经元组成的网络结构,其中每层与相邻层之间都有连接。
    • 它是基于多层感知机(Multilayer Perceptron, MLP)的复杂模型,其核心思想是在输入层和输出层之间堆叠多个隐藏层,每一层执行非线性变换,逐层递进地对输入数据进行特征提取和抽象表达。
  2. 发展历程
    • 神经网络技术起源于上世纪五、六十年代,当时称为感知机(perception),具有输入层、输出层和一个隐含层。
    • 随着研究的深入和计算能力的提升,特别是进入21世纪后,随着大数据集的出现和计算能力的显著提升,深度学习开始崛起,DNN作为其中一种重要模型,得到了广泛的关注和应用。
  3. 特点
    • 优势:DNN对于非线性问题的处理具有优势,尤其在处理高维度特征、特征与训练目标间关系不清晰的情况下,其性能优于许多传统模型,如树模型和FM家族模型。
    • 不足:DNN对类别特征的支持不好,随着类别特征的增多,可能会出现维度爆炸的情况。此外,DNN对系统算力要求较高。
  4. 应用领域
    • DNN广泛应用于各种领域,如图像识别、语音识别、自然语言处理、推荐系统等。在这些领域中,DNN能够有效地提取数据中的特征,并实现复杂的非线性映射,从而取得较好的性能。

综上所述,DNN是一种基于多层感知机的深度学习模型,具有强大的特征提取和抽象表达能力,广泛应用于各种领域。然而,它也存在一些不足,如对类别特征的支持不好和对系统算力要求较高。

相关推荐
机智的叉烧28 分钟前
前沿重器[57] | sigir24:大模型推荐系统的文本ID对齐学习
人工智能·学习·机器学习
凳子花❀31 分钟前
强化学习与深度学习以及相关芯片之间的区别
人工智能·深度学习·神经网络·ai·强化学习
泰迪智能科技012 小时前
高校深度学习视觉应用平台产品介绍
人工智能·深度学习
盛派网络小助手3 小时前
微信 SDK 更新 Sample,NCF 文档和模板更新,更多更新日志,欢迎解锁
开发语言·人工智能·后端·架构·c#
Eric.Lee20213 小时前
Paddle OCR 中英文检测识别 - python 实现
人工智能·opencv·计算机视觉·ocr检测
cd_farsight3 小时前
nlp初学者怎么入门?需要学习哪些?
人工智能·自然语言处理
AI明说3 小时前
评估大语言模型在药物基因组学问答任务中的表现:PGxQA
人工智能·语言模型·自然语言处理·数智药师·数智药学
Focus_Liu3 小时前
NLP-UIE(Universal Information Extraction)
人工智能·自然语言处理
PowerBI学谦4 小时前
使用copilot轻松将电子邮件转为高效会议
人工智能·copilot