DNN模型介绍

前言:最近在给小朋友做一个项目,通过图片识别动物;发现训练后显示最佳模型是DNN模型,因此在此记录一下搜索内容:

DNN,全称Deep Neural Networks,即深度神经网络,是一种深度学习模型。以下是对DNN的详细解释:

  1. 基本概念
    • DNN是由多层神经元组成的网络结构,其中每层与相邻层之间都有连接。
    • 它是基于多层感知机(Multilayer Perceptron, MLP)的复杂模型,其核心思想是在输入层和输出层之间堆叠多个隐藏层,每一层执行非线性变换,逐层递进地对输入数据进行特征提取和抽象表达。
  2. 发展历程
    • 神经网络技术起源于上世纪五、六十年代,当时称为感知机(perception),具有输入层、输出层和一个隐含层。
    • 随着研究的深入和计算能力的提升,特别是进入21世纪后,随着大数据集的出现和计算能力的显著提升,深度学习开始崛起,DNN作为其中一种重要模型,得到了广泛的关注和应用。
  3. 特点
    • 优势:DNN对于非线性问题的处理具有优势,尤其在处理高维度特征、特征与训练目标间关系不清晰的情况下,其性能优于许多传统模型,如树模型和FM家族模型。
    • 不足:DNN对类别特征的支持不好,随着类别特征的增多,可能会出现维度爆炸的情况。此外,DNN对系统算力要求较高。
  4. 应用领域
    • DNN广泛应用于各种领域,如图像识别、语音识别、自然语言处理、推荐系统等。在这些领域中,DNN能够有效地提取数据中的特征,并实现复杂的非线性映射,从而取得较好的性能。

综上所述,DNN是一种基于多层感知机的深度学习模型,具有强大的特征提取和抽象表达能力,广泛应用于各种领域。然而,它也存在一些不足,如对类别特征的支持不好和对系统算力要求较高。

相关推荐
狂炫冰美式26 分钟前
3天,1人,从0到付费产品:AI时代个人开发者的生存指南
前端·人工智能·后端
LCG元1 小时前
垂直Agent才是未来:详解让大模型"专业对口"的三大核心技术
人工智能
我不是QI1 小时前
周志华《机器学习—西瓜书》二
人工智能·安全·机器学习
操练起来1 小时前
【昇腾CANN训练营·第八期】Ascend C生态兼容:基于PyTorch Adapter的自定义算子注册与自动微分实现
人工智能·pytorch·acl·昇腾·cann
KG_LLM图谱增强大模型2 小时前
[500页电子书]构建自主AI Agent系统的蓝图:谷歌重磅发布智能体设计模式指南
人工智能·大模型·知识图谱·智能体·知识图谱增强大模型·agenticai
声网2 小时前
活动推荐丨「实时互动 × 对话式 AI」主题有奖征文
大数据·人工智能·实时互动
caiyueloveclamp2 小时前
【功能介绍03】ChatPPT好不好用?如何用?用户操作手册来啦!——【AI溯源篇】
人工智能·信息可视化·powerpoint·ai生成ppt·aippt
q***48412 小时前
Vanna AI:告别代码,用自然语言轻松查询数据库,领先的RAG2SQL技术让结果更智能、更精准!
人工智能·microsoft
LCG元2 小时前
告别空谈!手把手教你用LangChain构建"能干活"的垂直领域AI Agent
人工智能
想你依然心痛3 小时前
视界无界:基于Rokid眼镜的AI商务同传系统开发与实践
人工智能·智能硬件·rokid·ai眼镜·ar技术