DNN模型介绍

前言:最近在给小朋友做一个项目,通过图片识别动物;发现训练后显示最佳模型是DNN模型,因此在此记录一下搜索内容:

DNN,全称Deep Neural Networks,即深度神经网络,是一种深度学习模型。以下是对DNN的详细解释:

  1. 基本概念
    • DNN是由多层神经元组成的网络结构,其中每层与相邻层之间都有连接。
    • 它是基于多层感知机(Multilayer Perceptron, MLP)的复杂模型,其核心思想是在输入层和输出层之间堆叠多个隐藏层,每一层执行非线性变换,逐层递进地对输入数据进行特征提取和抽象表达。
  2. 发展历程
    • 神经网络技术起源于上世纪五、六十年代,当时称为感知机(perception),具有输入层、输出层和一个隐含层。
    • 随着研究的深入和计算能力的提升,特别是进入21世纪后,随着大数据集的出现和计算能力的显著提升,深度学习开始崛起,DNN作为其中一种重要模型,得到了广泛的关注和应用。
  3. 特点
    • 优势:DNN对于非线性问题的处理具有优势,尤其在处理高维度特征、特征与训练目标间关系不清晰的情况下,其性能优于许多传统模型,如树模型和FM家族模型。
    • 不足:DNN对类别特征的支持不好,随着类别特征的增多,可能会出现维度爆炸的情况。此外,DNN对系统算力要求较高。
  4. 应用领域
    • DNN广泛应用于各种领域,如图像识别、语音识别、自然语言处理、推荐系统等。在这些领域中,DNN能够有效地提取数据中的特征,并实现复杂的非线性映射,从而取得较好的性能。

综上所述,DNN是一种基于多层感知机的深度学习模型,具有强大的特征提取和抽象表达能力,广泛应用于各种领域。然而,它也存在一些不足,如对类别特征的支持不好和对系统算力要求较高。

相关推荐
程序员:钧念7 分钟前
深度学习与强化学习的区别
人工智能·python·深度学习·算法·transformer·rag
数据与后端架构提升之路38 分钟前
TeleTron 源码揭秘:如何用适配器模式“无缝魔改” Megatron-Core?
人工智能·python·适配器模式
Chef_Chen1 小时前
数据科学每日总结--Day44--机器学习
人工智能·机器学习
这张生成的图像能检测吗1 小时前
(论文速读)FR-IQA:面向广义图像质量评价:放松完美参考质量假设
人工智能·计算机视觉·图像增强·图像质量评估指标
KG_LLM图谱增强大模型2 小时前
本体论与知识图谱:揭示语义技术的核心差异
人工智能·知识图谱·本体论
JicasdC123asd2 小时前
黄瓜植株目标检测:YOLOv8结合Fasternet与BiFPN的高效改进方案
人工智能·yolo·目标检测
爱吃泡芙的小白白3 小时前
深入解析:2024年AI大模型核心算法与应用全景
人工智能·算法·大模型算法
小程故事多_803 小时前
攻克RAG系统最后一公里 图文混排PDF解析的挑战与实战方案
人工智能·架构·pdf·aigc
琅琊榜首20203 小时前
AI+编程双驱动:高质量短剧创作全流程指南
人工智能
Master_oid4 小时前
机器学习29:增强式学习(Deep Reinforcement Learning)④
人工智能·学习·机器学习