神经网络 torch.nn---Containers

torch.nn --- PyTorch 2.3 documentation

torch.nn - PyTorch中文文档 (pytorch-cn.readthedocs.io)

nn是Neural Network的简称,帮助程序员方便执行如下的与神经网络相关的行为:

(1)创建神经网络

(2)训练神经网络

(3)保存神经网络

(4)恢复神经网络

torch.nn中的函数简介

  • Containers(容器):神经网络的骨架

  • Convolution Layers:卷积层神经网络 torch.nn---Convolution Layers-CSDN博客

  • Pooling layers:池化层

  • Padding Layers:Padding

  • Non-linear Activations:非线性激活

  • Normalization Layers:正则化层

  • Recurrent Layers:循环神经网络层

  • Transformer Layers:

  • Linear Layers:

  • Dropout Layers:

torch.nn中Containers

class torch.nn.Module

所有网络的基类。

你的模型也应该继承这个类。

  • Module :对于所有 神经网络提供一个基本的骨架,一般定义一个神经网络用如下代码。其中,Model 代表模型的名称,nn.Module 就是继承了这个类的模板。然后我们先用__init__初始化,其中super(Model,self).__init__()指的是对父类进行初始化,后面的部分是根据自己构建的神经网络个性化定制的。之后我们使用forword函数对输入数据进行计算,也可以这么理解:对于一个神经网络,首先输入数据-->使用forword函数计算数据-->输出数据 ,这个过程也叫前向传播
python 复制代码
import torch
from torch import nn

class Mymodule(nn.Module):
    def __init__(self):
        super(Mymodule, self).__init__()

    def forward(self, input):
        output = input+1  #对输入神经网络的数据+1,然后返回
        return output

mymodule = Mymodule()
x = torch.tensor(1.0) #输入神经网络的数据
output = mymodule(x)
print(output) #输出神经网络的数据

神经网络运行过程

为了更好地说明上面代码的运行过程,把debug打到第14行的mymodule = Mymodule()代码上,并点击Step into My Code

之后一直点击Step into My Code,就可以看到代码的运行过程如下:

  • 在调用demo=Demo()后,首先使用super().__init__()对nn.Module进行初始化

  • 然后设定输入值x,并使用demo(x)将该值传入到forword函数中

  • forword函数将该值进行加一 ,并返回output

  • 最后将返回的output输出

torch.nn.Sequential

Sequential --- PyTorch 2.3 documentation

python 复制代码
model = nn.Sequential(
          nn.Conv2d(1,20,5),
          nn.ReLU(),
          nn.Conv2d(20,64,5),
          nn.ReLU()
        )
  • 在第一个变量名model中,依次执行nn.Convd2d(1,20,5)nn.ReLU()nn.Conv2d(20,64,5)nn.ReLU()四个函数。这样写起来的好处是使代码更简洁

  • 由此可见,函数nn.Sequential的主要作用为依次执行括号内的函数

相关推荐
无心水2 小时前
【分布式利器:腾讯TSF】7、TSF高级部署策略全解析:蓝绿/灰度发布落地+Jenkins CI/CD集成(Java微服务实战)
java·人工智能·分布式·ci/cd·微服务·jenkins·腾讯tsf
北辰alk7 小时前
RAG索引流程详解:如何高效解析文档构建知识库
人工智能
九河云7 小时前
海上风电“AI偏航对风”:把发电量提升2.1%,单台年增30万度
大数据·人工智能·数字化转型
wm10437 小时前
机器学习第二讲 KNN算法
人工智能·算法·机器学习
沈询-阿里8 小时前
Skills vs MCP:竞合关系还是互补?深入解析Function Calling、MCP和Skills的本质差异
人工智能·ai·agent·ai编程
xiaobai1788 小时前
测试工程师入门AI技术 - 前序:跨越焦虑,从优势出发开启学习之旅
人工智能·学习
盛世宏博北京8 小时前
云边协同・跨系统联动:智慧档案馆建设与功能落地
大数据·人工智能
Learn-Python8 小时前
MongoDB-only方法
python·sql
TGITCIC8 小时前
讲透知识图谱Neo4j在构建Agent时到底怎么用(二)
人工智能·知识图谱·neo4j·ai agent·ai智能体·大模型落地·graphrag
逆羽飘扬9 小时前
DeepSeek-mHC深度拆解:流形约束如何驯服狂暴的超连接?
人工智能