神经网络 torch.nn---Containers

torch.nn --- PyTorch 2.3 documentation

torch.nn - PyTorch中文文档 (pytorch-cn.readthedocs.io)

nn是Neural Network的简称,帮助程序员方便执行如下的与神经网络相关的行为:

(1)创建神经网络

(2)训练神经网络

(3)保存神经网络

(4)恢复神经网络

torch.nn中的函数简介

  • Containers(容器):神经网络的骨架

  • Convolution Layers:卷积层神经网络 torch.nn---Convolution Layers-CSDN博客

  • Pooling layers:池化层

  • Padding Layers:Padding

  • Non-linear Activations:非线性激活

  • Normalization Layers:正则化层

  • Recurrent Layers:循环神经网络层

  • Transformer Layers:

  • Linear Layers:

  • Dropout Layers:

torch.nn中Containers

class torch.nn.Module

所有网络的基类。

你的模型也应该继承这个类。

  • Module :对于所有 神经网络提供一个基本的骨架,一般定义一个神经网络用如下代码。其中,Model 代表模型的名称,nn.Module 就是继承了这个类的模板。然后我们先用__init__初始化,其中super(Model,self).__init__()指的是对父类进行初始化,后面的部分是根据自己构建的神经网络个性化定制的。之后我们使用forword函数对输入数据进行计算,也可以这么理解:对于一个神经网络,首先输入数据-->使用forword函数计算数据-->输出数据 ,这个过程也叫前向传播
python 复制代码
import torch
from torch import nn

class Mymodule(nn.Module):
    def __init__(self):
        super(Mymodule, self).__init__()

    def forward(self, input):
        output = input+1  #对输入神经网络的数据+1,然后返回
        return output

mymodule = Mymodule()
x = torch.tensor(1.0) #输入神经网络的数据
output = mymodule(x)
print(output) #输出神经网络的数据

神经网络运行过程

为了更好地说明上面代码的运行过程,把debug打到第14行的mymodule = Mymodule()代码上,并点击Step into My Code

之后一直点击Step into My Code,就可以看到代码的运行过程如下:

  • 在调用demo=Demo()后,首先使用super().__init__()对nn.Module进行初始化

  • 然后设定输入值x,并使用demo(x)将该值传入到forword函数中

  • forword函数将该值进行加一 ,并返回output

  • 最后将返回的output输出

torch.nn.Sequential

Sequential --- PyTorch 2.3 documentation

python 复制代码
model = nn.Sequential(
          nn.Conv2d(1,20,5),
          nn.ReLU(),
          nn.Conv2d(20,64,5),
          nn.ReLU()
        )
  • 在第一个变量名model中,依次执行nn.Convd2d(1,20,5)nn.ReLU()nn.Conv2d(20,64,5)nn.ReLU()四个函数。这样写起来的好处是使代码更简洁

  • 由此可见,函数nn.Sequential的主要作用为依次执行括号内的函数

相关推荐
RockyRich6 分钟前
突然无法调用scikit-learn、xgboost
python·机器学习·scikit-learn
真的很上进6 分钟前
2025最全TS手写题之partial/Omit/Pick/Exclude/Readonly/Required
java·前端·vue.js·python·算法·react·html5
jndingxin11 分钟前
OPenCV CUDA模块光流处理------利用Nvidia GPU的硬件加速能力来计算光流类cv::cuda::NvidiaHWOpticalFlow
人工智能·opencv·计算机视觉
计算机小手20 分钟前
开源大模型网关:One API实现主流AI模型API的统一管理与分发
人工智能·语言模型·oneapi
kk57926 分钟前
保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek
人工智能·windows·vscode·chatgpt
柠檬味拥抱1 小时前
融合CLIP与语言规划的大规模具身智能系统设计探索
人工智能
‘’林花谢了春红‘’1 小时前
高等三角函数大全
人工智能
敲键盘的小夜猫1 小时前
大模型智能体核心技术:CoT与ReAct深度解析
人工智能·python
华科云商xiao徐1 小时前
Python利用Scrapy框架部署分布式爬虫
python·scrapy
小前端大牛马1 小时前
java教程笔记(十四)-线程池
java·笔记·python