ChatTTS,语气韵律媲美真人的开源TTS模型,文字转语音界的新魁首,对标微软Azure-tts

前两天 2noise 团队开源了ChatTTS项目,并且释出了相关的音色模型权重,效果确实非常惊艳,让人一听难忘,即使摆在微软的商业级项目Azure-tts面前,也是毫不逊色的。

ChatTTS是专门为对话场景设计的文本转语音模型,例如大语言助手对话任务。它支持英文和中文两种语言。最大的模型使用了10万小时以上的中英文数据进行训练。目前在huggingface中的开源版本为4万小时训练且未SFT的版本。

本次分享一下如何在本地部署ChatTTS项目。

配置ChatTTS环境

首先确保本地已经安装好Anaconda软件包,运行命令创建虚拟环境:

conda create -n ChatTTS python=3.11

之所以选择Python3.11的版本,是因为该版本的整体性能更好。

随后克隆官方的项目:

git clone https://github.com/2noise/ChatTTS.git

进入项目

cd ChatTTS

激活虚拟环境

conda activate ChatTTS

安装项目依赖:

pip install -r requirements.txt

最后安装gpu版本的torch:

pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121

注意这里默认的cuda版本是12.1,如果你的本地cuda是11.8,那么就安装对应11.8的torch:

pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118

至此,环境就配置好了。

ChatTTS的基本使用

首先,是最基本的文字转语音功能:

import ChatTTS  
from IPython.display import Audio  
  
chat = ChatTTS.Chat()  
chat.load_models()  
  
texts = ["你好啊",]  
  
wavs = chat.infer(texts, use_decoder=True)  
Audio(wavs[0], rate=24_000, autoplay=True)

这里 ChatTTS 是项目内的文件夹模块,初始化后直接调用infer方法即可进行音频推理。

需要注意的是,首次运行会默认在Huggingface上下载模型,需要学术上网环境。

ChatTTS的进阶用法

###################################  
# Sample a speaker from Gaussian.  
import torch  
std, mean = torch.load('ChatTTS/asset/spk_stat.pt').chunk(2)  
rand_spk = torch.randn(768) * std + mean  
  
params_infer_code = {  
  'spk_emb': rand_spk, # add sampled speaker   
  'temperature': .3, # using custom temperature  
  'top_P': 0.7, # top P decode  
  'top_K': 20, # top K decode  
}  
  
###################################  
# For sentence level manual control.  
  
# use oral_(0-9), laugh_(0-2), break_(0-7)   
# to generate special token in text to synthesize.  
params_refine_text = {  
  'prompt': '[oral_2][laugh_0][break_6]'  
}   
  
wav = chat.infer("<PUT YOUR TEXT HERE>", params_refine_text=params_refine_text, params_infer_code=params_infer_code)  
  
###################################  
# For word level manual control.  
# use_decoder=False to infer faster with a bit worse quality  
text = 'What is [uv_break]your favorite english food?[laugh][lbreak]'  
wav = chat.infer(text, skip_refine_text=True, params_infer_code=params_infer_code, use_decoder=False)

这里通过 std, mean = torch.load('ChatTTS/asset/spk_stat.pt').chunk(2) 方法来固定音色。

随后通过 params_refine_text 来人为的增加笑声和断句。

ChatTTS的中文样例

最后是一个ChatTTS的中文推理例子:

inputs_cn = """  
chat T T S 是一款强大的对话式文本转语音模型。它有中英混读和多说话人的能力。  
chat T T S 不仅能够生成自然流畅的语音,还能控制[laugh]笑声啊[laugh],  
停顿啊[uv_break]语气词啊等副语言现象[uv_break]。这个韵律超越了许多开源模型[uv_break]。  
请注意,chat T T S 的使用应遵守法律和伦理准则,避免滥用的安全风险。[uv_break]'  
""".replace('\n', '')  
  
params_refine_text = {  
  'prompt': '[oral_2][laugh_0][break_4]'  
}   
audio_array_cn = chat.infer(inputs_cn, params_refine_text=params_refine_text)  
audio_array_en = chat.infer(inputs_en, params_refine_text=params_refine_text)

文本内容可以通过[laugh]和[uv_break]标识来进行笑声和语气停顿的定制化操作

结语

诚然,没有完美的产品,ChatTTS的模型稳定性似乎还有待提高, 偶尔会出现其他音色或音质很差的现象,这是自回归模型通常都会出现的问题,说话人的音色也有可能会在一定范围内变化, 可能会采样到音质非常差的结果, 这通常难以避免. 可以多采样几次来找到合适的结果,俗称抽卡,最后奉上一键整合包,与众乡亲同飨:

ChatTTS新版整合包:https://pan.quark.cn/s/e07f47edf82a
相关推荐
芥末的无奈4 分钟前
GStreamer 简明教程(九):插件开发,以一个音频特效插件为例
音视频·gstreamer
IE066 分钟前
深度学习系列76:流式tts的一个简单实现
人工智能·深度学习
GIS数据转换器10 分钟前
城市生命线安全保障:技术应用与策略创新
大数据·人工智能·安全·3d·智慧城市
一水鉴天1 小时前
为AI聊天工具添加一个知识系统 之65 详细设计 之6 变形机器人及伺服跟随
人工智能
井底哇哇7 小时前
ChatGPT是强人工智能吗?
人工智能·chatgpt
Coovally AI模型快速验证7 小时前
MMYOLO:打破单一模式限制,多模态目标检测的革命性突破!
人工智能·算法·yolo·目标检测·机器学习·计算机视觉·目标跟踪
AI浩8 小时前
【面试总结】FFN(前馈神经网络)在Transformer模型中先升维再降维的原因
人工智能·深度学习·计算机视觉·transformer
可为测控8 小时前
图像处理基础(4):高斯滤波器详解
人工智能·算法·计算机视觉
一水鉴天9 小时前
为AI聊天工具添加一个知识系统 之63 详细设计 之4:AI操作系统 之2 智能合约
开发语言·人工智能·python
倔强的石头1069 小时前
解锁辅助驾驶新境界:基于昇腾 AI 异构计算架构 CANN 的应用探秘
人工智能·架构