Python实战:计算向量夹角及相关系数

在Python中,我们可以使用NumPy库来计算向量之间的夹角(通常是它们之间的余弦相似度)以及皮尔逊相关系数(Pearson correlation coefficient)。下面是一个Python脚本,展示了如何执行这些计算。

首先,确保你已经安装了NumPy库。如果没有,可以通过pip来安装:

bash 复制代码
pip install numpy

然后,你可以使用以下Python脚本来计算向量夹角和相关系数:

python 复制代码
import numpy as np

# 定义两个向量
vec1 = np.array([1, 2, 3])
vec2 = np.array([4, 5, 6])

# 计算向量夹角(余弦相似度)
# 使用numpy的dot函数计算点积,linalg.norm计算范数
cos_sim = np.dot(vec1, vec2) / (np.linalg.norm(vec1) * np.linalg.norm(vec2))
print(f"向量夹角(余弦相似度): {cos_sim}")

# 计算皮尔逊相关系数
# 使用numpy的corrcoef函数
correlation_matrix = np.corrcoef(vec1, vec2)
pearson_correlation = correlation_matrix[0, 1]
print(f"皮尔逊相关系数: {pearson_correlation}")

# 如果你有两个等长的向量组成的二维数组(比如多对向量),
# 你可以直接传入这些向量组成的二维数组到corrcoef函数
# 例如:
vecs = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
correlation_matrix_multiple = np.corrcoef(vecs)
print(f"多向量皮尔逊相关系数矩阵:\n{correlation_matrix_multiple}")

在这个脚本中,我们首先定义了两个向量vec1vec2。然后,我们使用NumPy的dot函数来计算两个向量的点积,并使用linalg.norm函数来计算每个向量的范数(即长度)。余弦相似度就是点积除以两个范数的乘积。

接下来,我们使用NumPy的corrcoef函数来计算两个向量之间的皮尔逊相关系数。这个函数返回一个相关系数矩阵,但因为我们只传入了两个向量,所以结果矩阵只有一个非对角线元素(即两个向量之间的相关系数)。

最后,我们展示了如何计算多个向量对之间的皮尔逊相关系数矩阵。我们创建了一个二维数组vecs,其中包含了多对向量,并将这个数组传递给corrcoef函数。结果是一个相关系数矩阵,其中每个元素i, j表示vecs中第i个向量和第j个向量之间的相关系数。

相关推荐
计算机毕设小月哥3 分钟前
【Hadoop+Spark+python毕设】中国租房信息可视化分析系统、计算机毕业设计、包括数据爬取、Spark、数据分析、数据可视化、Hadoop
后端·python·mysql
2***c43513 分钟前
Redis——使用 python 操作 redis 之从 hmse 迁移到 hset
数据库·redis·python
技术净胜14 分钟前
MATLAB二维绘图教程:plot()函数全解析(线条样式/颜色/标记/坐标轴设置)
开发语言·matlab
Slow菜鸟34 分钟前
Java开发规范(八)| 安全规范—企业级应用的“架构级底线”
java·开发语言·安全
憨憨崽&41 分钟前
进击大厂:程序员必须修炼的算法“内功”与思维体系
开发语言·数据结构·算法·链表·贪心算法·线性回归·动态规划
毕设源码-邱学长1 小时前
【开题答辩全过程】以 基于Java的公职备考在线学习系统的设计与实现为例,包含答辩的问题和答案
java·开发语言·学习
二川bro1 小时前
模型部署实战:Python结合ONNX与TensorRT
开发语言·python
联系QQ:276998852 小时前
电化学与冷启动仿真的赝电容计算及GITT扩散系数研究——阻抗分析拟合与全电池电容器性能评估
开发语言
秋邱2 小时前
AI + 社区服务:智慧老年康养助手(轻量化落地方案)
人工智能·python·重构·ar·推荐算法·agi
rising start2 小时前
三、FastAPI :POST 请求、用户接口设计与 Requests 测试
python·网络协议·http·fastapi