Python实战:计算向量夹角及相关系数

在Python中,我们可以使用NumPy库来计算向量之间的夹角(通常是它们之间的余弦相似度)以及皮尔逊相关系数(Pearson correlation coefficient)。下面是一个Python脚本,展示了如何执行这些计算。

首先,确保你已经安装了NumPy库。如果没有,可以通过pip来安装:

bash 复制代码
pip install numpy

然后,你可以使用以下Python脚本来计算向量夹角和相关系数:

python 复制代码
import numpy as np

# 定义两个向量
vec1 = np.array([1, 2, 3])
vec2 = np.array([4, 5, 6])

# 计算向量夹角(余弦相似度)
# 使用numpy的dot函数计算点积,linalg.norm计算范数
cos_sim = np.dot(vec1, vec2) / (np.linalg.norm(vec1) * np.linalg.norm(vec2))
print(f"向量夹角(余弦相似度): {cos_sim}")

# 计算皮尔逊相关系数
# 使用numpy的corrcoef函数
correlation_matrix = np.corrcoef(vec1, vec2)
pearson_correlation = correlation_matrix[0, 1]
print(f"皮尔逊相关系数: {pearson_correlation}")

# 如果你有两个等长的向量组成的二维数组(比如多对向量),
# 你可以直接传入这些向量组成的二维数组到corrcoef函数
# 例如:
vecs = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
correlation_matrix_multiple = np.corrcoef(vecs)
print(f"多向量皮尔逊相关系数矩阵:\n{correlation_matrix_multiple}")

在这个脚本中,我们首先定义了两个向量vec1vec2。然后,我们使用NumPy的dot函数来计算两个向量的点积,并使用linalg.norm函数来计算每个向量的范数(即长度)。余弦相似度就是点积除以两个范数的乘积。

接下来,我们使用NumPy的corrcoef函数来计算两个向量之间的皮尔逊相关系数。这个函数返回一个相关系数矩阵,但因为我们只传入了两个向量,所以结果矩阵只有一个非对角线元素(即两个向量之间的相关系数)。

最后,我们展示了如何计算多个向量对之间的皮尔逊相关系数矩阵。我们创建了一个二维数组vecs,其中包含了多对向量,并将这个数组传递给corrcoef函数。结果是一个相关系数矩阵,其中每个元素i, j表示vecs中第i个向量和第j个向量之间的相关系数。

相关推荐
@小码农1 天前
6547网:2025年9月 Python等级考试(三级)真题及答案
服务器·数据库·python
哆啦A梦15881 天前
商城后台管理系统 06 Mock.js模拟数据
开发语言·javascript·ecmascript
毕设源码-郭学长1 天前
【开题答辩全过程】以 基于Java高考志愿填报推荐系统为例,包含答辩的问题和答案
java·开发语言·高考
Blossom.1181 天前
基于多模态大模型的工业质检系统:从AOI到“零样本“缺陷识别的产线实践
运维·人工智能·python·机器学习·自动化·测试用例·知识图谱
程序员-King.1 天前
【Qt开源项目】— ModbusScope-day 4
开发语言·qt
j_hy1 天前
OOP组件及事件处理(一)
java·开发语言
南棱笑笑生1 天前
20251215给飞凌OK3588-C开发板适配Rockchip原厂的Buildroot【linux-5.10】后调通typeC1接口
linux·c语言·开发语言·rockchip
雍凉明月夜1 天前
视觉opencv学习笔记Ⅴ-数据增强(1)
人工智能·python·opencv·计算机视觉
金牌归来发现妻女流落街头1 天前
【阻塞队列的等待唤醒机制】
java·开发语言·阻塞队列
骚戴1 天前
深入解析:Gemini 3.0 Pro 的 SSE 流式响应与跨区域延迟优化实践
java·人工智能·python·大模型·llm