Python实战:计算向量夹角及相关系数

在Python中,我们可以使用NumPy库来计算向量之间的夹角(通常是它们之间的余弦相似度)以及皮尔逊相关系数(Pearson correlation coefficient)。下面是一个Python脚本,展示了如何执行这些计算。

首先,确保你已经安装了NumPy库。如果没有,可以通过pip来安装:

bash 复制代码
pip install numpy

然后,你可以使用以下Python脚本来计算向量夹角和相关系数:

python 复制代码
import numpy as np

# 定义两个向量
vec1 = np.array([1, 2, 3])
vec2 = np.array([4, 5, 6])

# 计算向量夹角(余弦相似度)
# 使用numpy的dot函数计算点积,linalg.norm计算范数
cos_sim = np.dot(vec1, vec2) / (np.linalg.norm(vec1) * np.linalg.norm(vec2))
print(f"向量夹角(余弦相似度): {cos_sim}")

# 计算皮尔逊相关系数
# 使用numpy的corrcoef函数
correlation_matrix = np.corrcoef(vec1, vec2)
pearson_correlation = correlation_matrix[0, 1]
print(f"皮尔逊相关系数: {pearson_correlation}")

# 如果你有两个等长的向量组成的二维数组(比如多对向量),
# 你可以直接传入这些向量组成的二维数组到corrcoef函数
# 例如:
vecs = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
correlation_matrix_multiple = np.corrcoef(vecs)
print(f"多向量皮尔逊相关系数矩阵:\n{correlation_matrix_multiple}")

在这个脚本中,我们首先定义了两个向量vec1vec2。然后,我们使用NumPy的dot函数来计算两个向量的点积,并使用linalg.norm函数来计算每个向量的范数(即长度)。余弦相似度就是点积除以两个范数的乘积。

接下来,我们使用NumPy的corrcoef函数来计算两个向量之间的皮尔逊相关系数。这个函数返回一个相关系数矩阵,但因为我们只传入了两个向量,所以结果矩阵只有一个非对角线元素(即两个向量之间的相关系数)。

最后,我们展示了如何计算多个向量对之间的皮尔逊相关系数矩阵。我们创建了一个二维数组vecs,其中包含了多对向量,并将这个数组传递给corrcoef函数。结果是一个相关系数矩阵,其中每个元素i, j表示vecs中第i个向量和第j个向量之间的相关系数。

相关推荐
效率客栈老秦6 分钟前
Python Trae提示词开发实战(8):数据采集与清洗一体化方案让效率提升10倍
人工智能·python·ai·提示词·trae
哈里谢顿8 分钟前
一条 Python 语句在 C 扩展里到底怎么跑
python
znhy_238 分钟前
day46打卡
python
Edward.W1 小时前
Python uv:新一代Python包管理工具,彻底改变开发体验
开发语言·python·uv
小熊officer1 小时前
Python字符串
开发语言·数据库·python
月疯1 小时前
各种信号的模拟(ECG信号、质谱图、EEG信号),方便U-net训练
开发语言·python
荒诞硬汉1 小时前
JavaBean相关补充
java·开发语言
提笔忘字的帝国2 小时前
【教程】macOS 如何完全卸载 Java 开发环境
java·开发语言·macos
flysh052 小时前
C# 架构设计:接口 vs 抽象类的深度选型指南
开发语言·c#
2501_941882482 小时前
从灰度发布到流量切分的互联网工程语法控制与多语言实现实践思路随笔分享
java·开发语言