(深度学习记录)第TR4周:Pytorch复现Transformer

🏡我的环境:

  • 语言环境:Python3.11.4
  • 编译器:Jupyter Notebook
  • torcch版本:2.0.1
python 复制代码
import torch
import torch.nn as nn
 
class MultiHeadAttention(nn.Module):
    def __init__(self, hid_dim, n_heads, dropout):
        super().__init__()
 
        self.hid_dim = hid_dim
        self.n_heads = n_heads
 
        # hid_dim必须整除
        assert hid_dim % n_heads == 0
        # 定义wq
        self.w_q = nn.Linear(hid_dim, hid_dim)
        # 定义wk
        self.w_k = nn.Linear(hid_dim, hid_dim)
        # 定义wv
        self.w_v = nn.Linear(hid_dim, hid_dim)
 
        self.fc = nn.Linear(hid_dim, hid_dim)
        self.do = nn.Dropout(dropout)
 
        self.scale = torch.sqrt(torch.FloatTensor([hid_dim//n_heads]))
 
    def forward(self, query, key, value, mask=None):
        # Q与KV在句子长度这一个维度上数值可以不一样
        bsz = query.shape[0]
        Q = self.w_q(query)
        K = self.w_k(key)
        V = self.w_v(value)
 
        # 将QKV拆成多组,方案是将向量直接拆开了
        # (64, 12, 300) -> (64, 12, 6, 50) -> (64, 6, 12, 50)
        # (64, 10, 300) -> (64, 10, 6, 50) -> (64, 6, 10, 50)
        # (64, 10, 300) -> (64, 10, 6, 50) -> (64, 6, 10, 50)
        Q = Q.view(bsz, -1, self.n_heads, self.hid_dim//self.n_heads).permute(0, 2, 1, 3)
        K = K.view(bsz, -1, self.n_heads, self.hid_dim//self.n_heads).permute(0, 2, 1, 3)
        V = V.view(bsz, -1, self.n_heads, self.hid_dim//self.n_heads).permute(0, 2, 1, 3)
 
        # 第1步,Q x K / scale
        # (64, 6, 12, 50) x (64, 6, 50, 10) -> (64, 6, 12, 10)
        attention = torch.matmul(Q, K.permute(0, 1, 3, 2)) / self.scale
 
        # 需要mask掉的地方,attention设置的很小很小
        if mask is not None:
            attention = attention.masked_fill(mask == 0, -1e10)
 
        # 第2步,做softmax 再dropout得到attention
        attention = self.do(torch.softmax(attention, dim=-1))
 
 
        # 第3步,attention结果与k相乘,得到多头注意力的结果
        # (64, 6, 12, 10) x (64, 6, 10, 50) -> (64, 6, 12, 50)
        x = torch.matmul(attention, V)
 
        # 把结果转回去
        # (64, 6, 12, 50) -> (64, 12, 6, 50)
        x = x.permute(0, 2, 1, 3).contiguous()
 
        # 把结果合并
        # (64, 12, 6, 50) -> (64, 12, 300)
        x = x.view(bsz, -1, self.n_heads * (self.hid_dim // self.n_heads))
        x = self.fc(x)
        return x
 
query = torch.rand(64, 12, 300)
key = torch.rand(64, 10, 300)
value = torch.rand(64, 10, 300)
attention = MultiHeadAttention(hid_dim=300, n_heads=6, dropout=0.1)
output = attention(query, key, value)
print(output.shape)

多头注意力机制拓展了模型关注不同位置的能力,赋予Attention层多个"子表示空间"。

相关推荐
Work(沉淀版)1 小时前
DAY 40
人工智能·深度学习·机器学习
拾忆-eleven2 小时前
NLP学习路线图(二十六):自注意力机制
人工智能·深度学习
MYH5163 小时前
在NLP文本处理中,将字符映射到阿拉伯数字(构建词汇表vocab)的核心目的和意义
人工智能·深度学习·自然语言处理
狂小虎5 小时前
02 Deep learning神经网络的编程基础 逻辑回归--吴恩达
深度学习·神经网络·逻辑回归
猫天意6 小时前
【深度学习】为什么2个3×3的卷积可以相当于一个5×5的卷积核?为什么3个3×3的卷积相当于一个7×7的卷积核,到底区别在哪里?我们该如何使用?
人工智能·深度学习·神经网络·目标检测·视觉检测
阔跃生物7 小时前
Nature Methods | OmiCLIP:整合组织病理学与空间转录组学的AI模型
人工智能·深度学习·机器学习
Mrs.Gril8 小时前
RKNN3588上部署 RTDETRV2
深度学习·yolo·rknn·rtdetr
Ama_tor9 小时前
14.AI搭建preparationのBERT预训练模型进行文本分类
人工智能·深度学习·bert
QQ676580089 小时前
基于 PyTorch 的 VGG16 深度学习人脸识别检测系统的实现+ui界面
人工智能·pytorch·python·深度学习·ui·人脸识别
Blossom.1189 小时前
量子通信:从科幻走向现实的未来通信技术
人工智能·深度学习·目标检测·机器学习·计算机视觉·语音识别·量子计算