傅立叶变换矩阵的频谱响应

傅立叶变换矩阵的频谱响应

线性变换可以用矩阵表示,傅立叶变换是一种线性变换,因此也可以使用矩阵表示。具体可以参考:离散傅立叶变换和线性变换的关系:什么是线性空间?

1、傅立叶矩阵

X [ k ] = ∑ n = 0 N − 1 x [ n ] e − j k 2 π N n (1) X[k] = \sum_{n=0}^{N-1} x[n]e^{-j k \frac{2\pi}{N} n} \tag{1} X[k]=n=0∑N−1x[n]e−jkN2πn(1)

x [ n ] = 1 N ∑ n = 0 N − 1 X [ k ] e j k 2 π N n (2) x[n] = \frac{1}{N}\sum_{n=0}^{N-1} X[k]e^{j k \frac{2\pi}{N} n} \tag{2} x[n]=N1n=0∑N−1X[k]ejkN2πn(2)

python 复制代码
import numpy as np
def F(N):
    F = []
    for k in range(N):
        row_k =[]
        for n in range(N):
            row_k.append(np.exp(-1j*2*np.pi/N*k*n))
        F.append(row_k)
    return np.array(F)

N = 100
x = np.zeros((N,1))
x[0] = 1
X_dft = F(N)@x
X_fft = np.fft.fft(x.T).T
np.linalg.norm(X_dft-X_fft)
python 复制代码
In [18]: X_dft.T
Out[18]: 
array([[1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j,
        1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j,
        1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j,
        1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j,
        1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j,
        1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j,
        1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j,
        1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j,
        1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j,
        1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j,
        1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j,
        1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j,
        1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j]])

2、傅立叶变换的频谱响应

一个冲激通过傅立叶变换得到一个常数函数。这个和白噪声的频谱响应是冲激函数是一致的。

因此傅立叶变换的响应是 h ( t ) = 1 h(t)=1 h(t)=1​。

系统函数 H ( w ) = N δ ( w ) H(w) = N\delta(w) H(w)=Nδ(w)

3、平稳随机信号经过线性系统

因此一个平稳随机信号的离散傅立叶变换的均值为 a N aN aN

相关推荐
18538162800航12 小时前
短视频矩阵系统搭建指南:源码部署与全流程解析
线性代数·矩阵·音视频
Theodore_10221 天前
深度学习(9)导数与计算图
人工智能·深度学习·机器学习·矩阵·线性回归
夏鹏今天学习了吗1 天前
【LeetCode热题100(62/100)】搜索二维矩阵
算法·leetcode·矩阵
我爱C编程1 天前
基于无六环H校验矩阵和归一化偏移minsum算法的LDPC编译码matlab性能仿真
matlab·矩阵·ldpc·无六环·归一化偏移·minsum
短视频矩阵源码定制1 天前
矩阵系统哪个好?2025年全方位选型指南与品牌深度解析
java·人工智能·矩阵·架构·aigc
hakuii1 天前
SVD分解后的各个矩阵的深层理解
人工智能·机器学习·矩阵
bubiyoushang8881 天前
使用MATLAB计算梁单元的刚度矩阵和质量矩阵
开发语言·matlab·矩阵
无风听海1 天前
神经网络之奇异值分解
神经网络·线性代数·机器学习
西西弗Sisyphus1 天前
线性代数 - 奇异值分解(SVD Singular Value Decomposition)- 奇异值在哪里
线性代数·矩阵·奇异值分解·线程方程组
小蜜蜂爱编程1 天前
行列式的展开
线性代数