傅立叶变换矩阵的频谱响应

傅立叶变换矩阵的频谱响应

线性变换可以用矩阵表示,傅立叶变换是一种线性变换,因此也可以使用矩阵表示。具体可以参考:离散傅立叶变换和线性变换的关系:什么是线性空间?

1、傅立叶矩阵

X [ k ] = ∑ n = 0 N − 1 x [ n ] e − j k 2 π N n (1) X[k] = \sum_{n=0}^{N-1} x[n]e^{-j k \frac{2\pi}{N} n} \tag{1} X[k]=n=0∑N−1x[n]e−jkN2πn(1)

x [ n ] = 1 N ∑ n = 0 N − 1 X [ k ] e j k 2 π N n (2) x[n] = \frac{1}{N}\sum_{n=0}^{N-1} X[k]e^{j k \frac{2\pi}{N} n} \tag{2} x[n]=N1n=0∑N−1X[k]ejkN2πn(2)

python 复制代码
import numpy as np
def F(N):
    F = []
    for k in range(N):
        row_k =[]
        for n in range(N):
            row_k.append(np.exp(-1j*2*np.pi/N*k*n))
        F.append(row_k)
    return np.array(F)

N = 100
x = np.zeros((N,1))
x[0] = 1
X_dft = F(N)@x
X_fft = np.fft.fft(x.T).T
np.linalg.norm(X_dft-X_fft)
python 复制代码
In [18]: X_dft.T
Out[18]: 
array([[1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j,
        1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j,
        1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j,
        1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j,
        1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j,
        1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j,
        1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j,
        1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j,
        1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j,
        1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j,
        1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j,
        1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j,
        1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j]])

2、傅立叶变换的频谱响应

一个冲激通过傅立叶变换得到一个常数函数。这个和白噪声的频谱响应是冲激函数是一致的。

因此傅立叶变换的响应是 h ( t ) = 1 h(t)=1 h(t)=1​。

系统函数 H ( w ) = N δ ( w ) H(w) = N\delta(w) H(w)=Nδ(w)

3、平稳随机信号经过线性系统

因此一个平稳随机信号的离散傅立叶变换的均值为 a N aN aN

相关推荐
豆沙沙包?3 小时前
2025年--Lc188--931. 下降路径最小和(多维动态规划,矩阵)--Java版
java·矩阵·动态规划
熬了夜的程序员4 小时前
【LeetCode】74. 搜索二维矩阵
线性代数·算法·leetcode·职场和发展·矩阵·深度优先·动态规划
点云SLAM4 小时前
矩阵奇异值分解算法(SVD)的导数 / 灵敏度分析
人工智能·线性代数·算法·机器学习·矩阵·数据压缩·svd算法
坚持编程的菜鸟4 小时前
LeetCode每日一题——矩阵置0
c语言·算法·leetcode·矩阵
hazy1k17 小时前
51单片机基础-矩阵按键
嵌入式硬件·矩阵·51单片机
小欣加油1 天前
leetcode 329 矩阵中的最长递增路径
c++·算法·leetcode·矩阵·深度优先·剪枝
passxgx1 天前
10.5 傅里叶级数:用线性代数研究函数
线性代数
墨染天姬1 天前
【AI】数学基础之矩阵
人工智能·线性代数·矩阵
坚持编程的菜鸟2 天前
LeetCode每日一题——螺旋矩阵
c语言·算法·leetcode·矩阵
hour_go2 天前
张量、向量与矩阵:多维世界的数据密码
线性代数·矩阵