傅立叶变换矩阵的频谱响应

傅立叶变换矩阵的频谱响应

线性变换可以用矩阵表示,傅立叶变换是一种线性变换,因此也可以使用矩阵表示。具体可以参考:离散傅立叶变换和线性变换的关系:什么是线性空间?

1、傅立叶矩阵

X [ k ] = ∑ n = 0 N − 1 x [ n ] e − j k 2 π N n (1) X[k] = \sum_{n=0}^{N-1} x[n]e^{-j k \frac{2\pi}{N} n} \tag{1} X[k]=n=0∑N−1x[n]e−jkN2πn(1)

x [ n ] = 1 N ∑ n = 0 N − 1 X [ k ] e j k 2 π N n (2) x[n] = \frac{1}{N}\sum_{n=0}^{N-1} X[k]e^{j k \frac{2\pi}{N} n} \tag{2} x[n]=N1n=0∑N−1X[k]ejkN2πn(2)

python 复制代码
import numpy as np
def F(N):
    F = []
    for k in range(N):
        row_k =[]
        for n in range(N):
            row_k.append(np.exp(-1j*2*np.pi/N*k*n))
        F.append(row_k)
    return np.array(F)

N = 100
x = np.zeros((N,1))
x[0] = 1
X_dft = F(N)@x
X_fft = np.fft.fft(x.T).T
np.linalg.norm(X_dft-X_fft)
python 复制代码
In [18]: X_dft.T
Out[18]: 
array([[1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j,
        1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j,
        1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j,
        1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j,
        1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j,
        1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j,
        1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j,
        1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j,
        1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j,
        1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j,
        1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j,
        1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j,
        1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j]])

2、傅立叶变换的频谱响应

一个冲激通过傅立叶变换得到一个常数函数。这个和白噪声的频谱响应是冲激函数是一致的。

因此傅立叶变换的响应是 h ( t ) = 1 h(t)=1 h(t)=1​。

系统函数 H ( w ) = N δ ( w ) H(w) = N\delta(w) H(w)=Nδ(w)

3、平稳随机信号经过线性系统

因此一个平稳随机信号的离散傅立叶变换的均值为 a N aN aN

相关推荐
小星星爱分享13 小时前
抖音多账号运营新范式:巨推AI如何解锁流量矩阵的商业密码
人工智能·线性代数·矩阵
和花折月丶17 小时前
Visual Studio 2022调试Eigen库查看矩阵与向量的值
矩阵·visual studio·eigen库
德先生&赛先生1 天前
LeetCode-542. 01 矩阵
算法·leetcode·矩阵
ScilogyHunter2 天前
深入理解3x3矩阵
线性代数·矩阵
云手机掌柜3 天前
亚矩阵云手机:亚马逊第三方店铺多账号安全合规运营的核心技术支撑
安全·智能手机·矩阵·手机
云手机掌柜3 天前
云手机矩阵:重构企业云办公架构的技术路径与实践落地
智能手机·矩阵·重构
彬彬醤3 天前
Mac怎么连接VPS?可以参考这几种方法
大数据·运维·服务器·数据库·线性代数·macos·矩阵
郝学胜-神的一滴4 天前
深度解析游戏引擎中的相机:视图矩阵
程序人生·unity·矩阵·游戏引擎·godot·图形渲染·虚幻
岁忧4 天前
(nice!!!)(LeetCode 每日一题) 1277. 统计全为 1 的正方形子矩阵 (动态规划)
java·c++·算法·leetcode·矩阵·go·动态规划
叶子2024224 天前
open3d-点云函数:变换:旋转,缩放、平移,齐次变换(R,T)等
线性代数·矩阵