傅立叶变换矩阵的频谱响应

傅立叶变换矩阵的频谱响应

线性变换可以用矩阵表示,傅立叶变换是一种线性变换,因此也可以使用矩阵表示。具体可以参考:离散傅立叶变换和线性变换的关系:什么是线性空间?

1、傅立叶矩阵

X [ k ] = ∑ n = 0 N − 1 x [ n ] e − j k 2 π N n (1) X[k] = \sum_{n=0}^{N-1} x[n]e^{-j k \frac{2\pi}{N} n} \tag{1} X[k]=n=0∑N−1x[n]e−jkN2πn(1)

x [ n ] = 1 N ∑ n = 0 N − 1 X [ k ] e j k 2 π N n (2) x[n] = \frac{1}{N}\sum_{n=0}^{N-1} X[k]e^{j k \frac{2\pi}{N} n} \tag{2} x[n]=N1n=0∑N−1X[k]ejkN2πn(2)

python 复制代码
import numpy as np
def F(N):
    F = []
    for k in range(N):
        row_k =[]
        for n in range(N):
            row_k.append(np.exp(-1j*2*np.pi/N*k*n))
        F.append(row_k)
    return np.array(F)

N = 100
x = np.zeros((N,1))
x[0] = 1
X_dft = F(N)@x
X_fft = np.fft.fft(x.T).T
np.linalg.norm(X_dft-X_fft)
python 复制代码
In [18]: X_dft.T
Out[18]: 
array([[1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j,
        1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j,
        1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j,
        1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j,
        1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j,
        1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j,
        1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j,
        1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j,
        1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j,
        1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j,
        1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j,
        1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j,
        1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j]])

2、傅立叶变换的频谱响应

一个冲激通过傅立叶变换得到一个常数函数。这个和白噪声的频谱响应是冲激函数是一致的。

因此傅立叶变换的响应是 h ( t ) = 1 h(t)=1 h(t)=1​。

系统函数 H ( w ) = N δ ( w ) H(w) = N\delta(w) H(w)=Nδ(w)

3、平稳随机信号经过线性系统

因此一个平稳随机信号的离散傅立叶变换的均值为 a N aN aN

相关推荐
种时光的人7 小时前
CANN仓库核心解读:catlass夯实AIGC大模型矩阵计算的算力基石
线性代数·矩阵·aigc
Zfox_10 小时前
CANN Catlass 算子模板库深度解析:高性能矩阵乘(GEMM)原理、融合优化与模板化开发实践
线性代数·矩阵
lbb 小魔仙16 小时前
面向 NPU 的高性能矩阵乘法:CANN ops-nn 算子库架构与优化技术
线性代数·矩阵·架构
空白诗16 小时前
CANN ops-nn 算子解读:大语言模型推理中的 MatMul 矩阵乘实现
人工智能·语言模型·矩阵
劈星斩月18 小时前
线性代数-3Blue1Brown《线性代数的本质》特征向量与特征值(12)
线性代数·特征值·特征向量·特征方程
池央20 小时前
ops-nn 算子库中的数据布局与混合精度策略:卷积、矩阵乘法与 RNN 的优化实践
rnn·线性代数·矩阵
深鱼~1 天前
大模型底层算力支撑:ops-math在矩阵乘法上的优化
人工智能·线性代数·矩阵·cann
Zfox_1 天前
CANN PyPTO 编程范式深度解析:并行张量与 Tile 分块操作的架构原理、内存控制与流水线调度机制
线性代数·矩阵·架构
TechWJ1 天前
catlass深度解析:Ascend平台的高性能矩阵运算模板库
线性代数·矩阵·ascend·cann·catlass
deep_drink2 天前
【基础知识一】线性代数的核心:从矩阵变换到 SVD 终极奥义
线性代数·机器学习·矩阵