sklearn.pipeline的用法介绍

sklearn.pipeline可以将多个数据预处理步骤和机器学习模型组合,成一个整体,从而简化了机器学习的流程。 sklearn.pipeline类可以将多个算法模型串联起来,比如将特征提取、归一化、分类组织在一起形成一个典型的机器学习问题工作流,主要带来两点好处:

  • 1.直接调用 fit 和 predict 方法来对pipeine中的所有算法模型进行训练和预测。
  • 2.可以结合gid search对参数进行选择,具体而言,Pipeline 实现了对全部步骤的流式化封装和管理,可以很方便地使参数集在新数据集(比如测试集)上被重复使用。

下面是一个简单的例子,展示了如何使用 Pipelne 对训练集和测试集进行如下操作: 先用 Siandardscaler对数据集每一列做标准化处理(是transfomer),再用PCA将原始的30维度特征压缩到2维度, 最后再用模型,LogisticRegression(是Estimator)。

调用Pipeline时,输入中元组构成的列表,每个元组第一个值为变量名,元组第二个元素是sklearn中的transfomer或Esimator,注意中间每一步是transformer,即它们必须包含fittransfomr方法,或者ft_tansform,最后一步是个Estimator,即最后一步模型要有fit方法,可以没有transform方法.

python 复制代码
from sklearn.preprocessing import Standardscalerfrom sklearn.decomposition import PCA
from sklearn.linear model import LogisticRegression
from sklearn.pipeline import Pipeline

pipe_lr= Pipeline([
	('sc',standardscaler()),
	('pca',PCA(n_components=2)),
	('clf',LogisticRegression(random state=1))
	])
pipe_lr.fit(x_train, y_train)
print('Test accuracy:%.3f'% pipe_lr.score(x test, y_test))
相关推荐
代码洲学长1 分钟前
卷积神经网络CNN
人工智能·神经网络·cnn
Wpa.wk2 分钟前
自动化测试 - 文件上传 和 弹窗处理
开发语言·javascript·自动化测试·经验分享·爬虫·python·selenium
_OP_CHEN4 分钟前
【Python基础】(二)从 0 到 1 入门 Python 语法基础:从表达式到运算符的全面指南
开发语言·python
l1t4 分钟前
利用小米mimo为精确覆盖矩形问题C程序添加打乱函数求出更大的解
c语言·开发语言·javascript·人工智能·算法
weixin_398187755 分钟前
YOLOv11 轻量级移动端网络ShuffleNetV2集成指南(详注)
人工智能·yolo
_Li.8 分钟前
机器学习-贝叶斯公式
人工智能·机器学习·概率论
luoganttcc11 分钟前
详细分析一下 国富论里里面 十一章 关于白银价格的 论述
人工智能
我命由我1234513 分钟前
Python Flask 开发:在 Flask 中返回字符串时,浏览器将其作为 HTML 解析
服务器·开发语言·后端·python·flask·html·学习方法
拾忆,想起15 分钟前
设计模式:软件开发的可复用武功秘籍
开发语言·python·算法·微服务·设计模式·性能优化·服务发现
GEO AI搜索优化助手21 分钟前
生态震荡——当“摘要”成为终点,知识价值链的重塑与博弈
人工智能·搜索引擎·生成式引擎优化·ai优化·geo搜索优化