sklearn.pipeline的用法介绍

sklearn.pipeline可以将多个数据预处理步骤和机器学习模型组合,成一个整体,从而简化了机器学习的流程。 sklearn.pipeline类可以将多个算法模型串联起来,比如将特征提取、归一化、分类组织在一起形成一个典型的机器学习问题工作流,主要带来两点好处:

  • 1.直接调用 fit 和 predict 方法来对pipeine中的所有算法模型进行训练和预测。
  • 2.可以结合gid search对参数进行选择,具体而言,Pipeline 实现了对全部步骤的流式化封装和管理,可以很方便地使参数集在新数据集(比如测试集)上被重复使用。

下面是一个简单的例子,展示了如何使用 Pipelne 对训练集和测试集进行如下操作: 先用 Siandardscaler对数据集每一列做标准化处理(是transfomer),再用PCA将原始的30维度特征压缩到2维度, 最后再用模型,LogisticRegression(是Estimator)。

调用Pipeline时,输入中元组构成的列表,每个元组第一个值为变量名,元组第二个元素是sklearn中的transfomer或Esimator,注意中间每一步是transformer,即它们必须包含fittransfomr方法,或者ft_tansform,最后一步是个Estimator,即最后一步模型要有fit方法,可以没有transform方法.

python 复制代码
from sklearn.preprocessing import Standardscalerfrom sklearn.decomposition import PCA
from sklearn.linear model import LogisticRegression
from sklearn.pipeline import Pipeline

pipe_lr= Pipeline([
	('sc',standardscaler()),
	('pca',PCA(n_components=2)),
	('clf',LogisticRegression(random state=1))
	])
pipe_lr.fit(x_train, y_train)
print('Test accuracy:%.3f'% pipe_lr.score(x test, y_test))
相关推荐
BestSongC35 分钟前
基于YOLOv8模型的安全背心目标检测系统(PyTorch+Pyside6+YOLOv8模型)
人工智能·pytorch·深度学习·yolo·目标检测·计算机视觉
Ws_36 分钟前
leetcode LCR 068 搜索插入位置
数据结构·python·算法·leetcode
冻感糕人~38 分钟前
大模型研究报告 | 2024年中国金融大模型产业发展洞察报告|附34页PDF文件下载
人工智能·程序人生·金融·llm·大语言模型·ai大模型·大模型研究报告
lx学习1 小时前
Python学习26天
开发语言·python·学习
qq_273900232 小时前
pytorch register_buffer介绍
人工智能·pytorch·python
大今野2 小时前
python习题练习
开发语言·python
q567315233 小时前
用 PHP或Python加密字符串,用iOS解密
java·python·ios·缓存·php·命令模式
龙的爹23333 小时前
论文翻译 | The Capacity for Moral Self-Correction in Large Language Models
人工智能·深度学习·算法·机器学习·语言模型·自然语言处理·prompt
python_知世4 小时前
2024年中国金融大模型产业发展洞察报告(附完整PDF下载)
人工智能·自然语言处理·金融·llm·计算机技术·大模型微调·大模型研究报告
Fanstay9854 小时前
人工智能技术的应用前景及其对生活和工作方式的影响
人工智能·生活