sklearn.pipeline的用法介绍

sklearn.pipeline可以将多个数据预处理步骤和机器学习模型组合,成一个整体,从而简化了机器学习的流程。 sklearn.pipeline类可以将多个算法模型串联起来,比如将特征提取、归一化、分类组织在一起形成一个典型的机器学习问题工作流,主要带来两点好处:

  • 1.直接调用 fit 和 predict 方法来对pipeine中的所有算法模型进行训练和预测。
  • 2.可以结合gid search对参数进行选择,具体而言,Pipeline 实现了对全部步骤的流式化封装和管理,可以很方便地使参数集在新数据集(比如测试集)上被重复使用。

下面是一个简单的例子,展示了如何使用 Pipelne 对训练集和测试集进行如下操作: 先用 Siandardscaler对数据集每一列做标准化处理(是transfomer),再用PCA将原始的30维度特征压缩到2维度, 最后再用模型,LogisticRegression(是Estimator)。

调用Pipeline时,输入中元组构成的列表,每个元组第一个值为变量名,元组第二个元素是sklearn中的transfomer或Esimator,注意中间每一步是transformer,即它们必须包含fittransfomr方法,或者ft_tansform,最后一步是个Estimator,即最后一步模型要有fit方法,可以没有transform方法.

python 复制代码
from sklearn.preprocessing import Standardscalerfrom sklearn.decomposition import PCA
from sklearn.linear model import LogisticRegression
from sklearn.pipeline import Pipeline

pipe_lr= Pipeline([
	('sc',standardscaler()),
	('pca',PCA(n_components=2)),
	('clf',LogisticRegression(random state=1))
	])
pipe_lr.fit(x_train, y_train)
print('Test accuracy:%.3f'% pipe_lr.score(x test, y_test))
相关推荐
天远Date Lab3 分钟前
Python实战:对接天远数据手机号码归属地API,实现精准用户分群与本地化运营
大数据·开发语言·python
natide7 分钟前
text-generateion-webui模型加载器(Model Loaders)选项
人工智能·llama
野生的码农14 分钟前
码农的妇产科实习记录
android·java·人工智能
TechubNews22 分钟前
2026 年观察名单:基于 a16z「重大构想」,详解稳定币、RWA 及 AI Agent 等 8 大流行趋势
大数据·人工智能·区块链
哈里谢顿25 分钟前
Python异常链:谁才是罪魁祸首?一探"The above exception"的时间顺序
python
脑极体35 分钟前
机器人的罪与罚
人工智能·机器人
三不原则41 分钟前
故障案例:容器启动失败排查(AI运维场景)——从日志分析到根因定位
运维·人工智能·kubernetes
点云SLAM1 小时前
凸优化(Convex Optimization)理论(1)
人工智能·算法·slam·数学原理·凸优化·数值优化理论·机器人应用
哈里谢顿1 小时前
验证 list() 会调用 `__len__` 方法的深度解析
python·django
会周易的程序员1 小时前
多模态AI 基于工业级编译技术的PLC数据结构解析与映射工具
数据结构·c++·人工智能·单例模式·信息可视化·架构