sklearn.pipeline的用法介绍

sklearn.pipeline可以将多个数据预处理步骤和机器学习模型组合,成一个整体,从而简化了机器学习的流程。 sklearn.pipeline类可以将多个算法模型串联起来,比如将特征提取、归一化、分类组织在一起形成一个典型的机器学习问题工作流,主要带来两点好处:

  • 1.直接调用 fit 和 predict 方法来对pipeine中的所有算法模型进行训练和预测。
  • 2.可以结合gid search对参数进行选择,具体而言,Pipeline 实现了对全部步骤的流式化封装和管理,可以很方便地使参数集在新数据集(比如测试集)上被重复使用。

下面是一个简单的例子,展示了如何使用 Pipelne 对训练集和测试集进行如下操作: 先用 Siandardscaler对数据集每一列做标准化处理(是transfomer),再用PCA将原始的30维度特征压缩到2维度, 最后再用模型,LogisticRegression(是Estimator)。

调用Pipeline时,输入中元组构成的列表,每个元组第一个值为变量名,元组第二个元素是sklearn中的transfomer或Esimator,注意中间每一步是transformer,即它们必须包含fittransfomr方法,或者ft_tansform,最后一步是个Estimator,即最后一步模型要有fit方法,可以没有transform方法.

python 复制代码
from sklearn.preprocessing import Standardscalerfrom sklearn.decomposition import PCA
from sklearn.linear model import LogisticRegression
from sklearn.pipeline import Pipeline

pipe_lr= Pipeline([
	('sc',standardscaler()),
	('pca',PCA(n_components=2)),
	('clf',LogisticRegression(random state=1))
	])
pipe_lr.fit(x_train, y_train)
print('Test accuracy:%.3f'% pipe_lr.score(x test, y_test))
相关推荐
MediaTea3 小时前
Python:生成器表达式详解
开发语言·python
jz_ddk3 小时前
[数学基础] 浅尝向量与张量
人工智能·机器学习·向量·张量
-To be number.wan3 小时前
Python数据分析:SciPy科学计算
python·学习·数据分析
Dxy12393102163 小时前
DataFrame数据修改:从基础操作到高效实践的完整指南
python·dataframe
孔明兴汉4 小时前
大模型 ai coding 比较
人工智能
overmind5 小时前
oeasy Python 115 列表弹栈用pop删除指定索引
开发语言·python
IT研究所5 小时前
IT 资产管理 (ITAM) 与 ITSM 协同实践:构建从资产到服务的闭环管理体系
大数据·运维·人工智能·科技·安全·低代码·自动化
沐曦股份MetaX5 小时前
基于内生复杂性的类脑脉冲大模型“瞬悉1.0”问世
人工智能·开源
hnxaoli6 小时前
win10程序(十六)通达信参数清洗器
开发语言·python·小程序·股票·炒股
power 雀儿6 小时前
张量基本运算
人工智能