Hadoop

一、大数据诞生背景

1.传统数据处理架构存在问题

|----------|-------------|---------------|-------------------------------------------|
| | 数据结构类型 | 数据库类型 | 在大数据背景下会产生的问题 |
| 传统数据处理架构 | 结构化数据 | 数据库,数据仓库 | 单机处理速度慢。MPP架构存在扩展性,热点问题 |
| 传统数据处理架构 | 非结构化、半结构化数据 | NoSQL数据库、并发程序 | NoSQL数据库只负责存储,程序处理时涉及到数据移动,数据移动的网络开销大,速度慢 |

2.大数据的特征(4V特征)

  • 数据规模巨大(volume)
  • 生成和处理速度极快(velocity)
  • 数据类型多样但密度较低(variety)
  • 价值巨大但密度较低(value)

3.大数据离线与实时场景

4.大数据典型应用场景及架构改进

移动计算而非移动数据

5.大数据的编年史

6.大数据技术生态

二、大数据之HDFS

1.HDFS概念与优缺点

Hadoop分布式文件系统(Hadoop Distributed File System),2003年10月Google发表了GFS(Google File System)论文,HDFS是GFS的开源实现,HDFS是Hadoop的核心子项目(一个三个核心:HDFS、YARN、MapReduce),在开源大数据体系中,地位无可替代

HDFS组成

  • NameNode(nn):存储文件的元数据,如文件名,文件目录结构,文件属性(生成时间、副本数、文件权限),以及每个文件的块列表和块所在的DataNode等。
  • DataNode(dn):在本地文件系统存储文件块数据,以及块数据的校验和。
  • Secondary NameNode(2nn):每隔一段时间对NameNode元数据备份。

HDFS优点

  • 高容错、高可用、高扩展
  • 海量数据存储:典型文件大小GB~TB,百万以上文件数量,PB以上规模数据
  • 构建成本低:构建在廉价的商用服务器上即可
  • 安全可靠:提供了容错和恢复机制
  • 适合大规模离线批处理

HDFS缺点

  • 不适合低延迟数据访问
  • **不支持并发写入:**一个文件同时只能有一个写入者
  • 不适合大量小文件存储
  • 不支持文件随机修改

2.HDFS架构

3.HDFS数据存储Block-DataNode

4.HDFS元数据存储-NameNode

5.HDFS读写流程

6.HDFS安全模式

7.HDFS基本用法

相关推荐
zskj_zhyl2 小时前
智慧康养新篇章:七彩喜如何重塑老年生活的温度与尊严
大数据·人工智能·科技·物联网·生活
苗壮.3 小时前
「个人 Gitee 仓库」与「企业 Gitee 仓库」同步的几种常见方式
大数据·elasticsearch·gitee
驾数者3 小时前
Flink SQL入门指南:从零开始搭建流处理应用
大数据·sql·flink
乌恩大侠3 小时前
DGX Spark 恢复系统
大数据·分布式·spark
KM_锰4 小时前
flink开发遇到的问题
大数据·flink
人大博士的交易之路7 小时前
龙虎榜——20251106
大数据·数学建模·数据分析·缠论·缠中说禅·龙虎榜
YangYang9YangYan7 小时前
中专服装设计专业职业发展指南
大数据·人工智能·数据分析
私域实战笔记8 小时前
企业微信SCRM工具该如何选择?从需求匹配出发的筛选思路
大数据·人工智能·企业微信·scrm·企业微信scrm
微盛企微增长小知识8 小时前
SCRM工具测评:助力企业微信私域运营的核心功能解析
大数据·人工智能·企业微信
武子康8 小时前
大数据-145 Apache Kudu 架构与实战:RowSet、分区与 Raft 全面解析
大数据·后端·nosql