Hadoop

一、大数据诞生背景

1.传统数据处理架构存在问题

|----------|-------------|---------------|-------------------------------------------|
| | 数据结构类型 | 数据库类型 | 在大数据背景下会产生的问题 |
| 传统数据处理架构 | 结构化数据 | 数据库,数据仓库 | 单机处理速度慢。MPP架构存在扩展性,热点问题 |
| 传统数据处理架构 | 非结构化、半结构化数据 | NoSQL数据库、并发程序 | NoSQL数据库只负责存储,程序处理时涉及到数据移动,数据移动的网络开销大,速度慢 |

2.大数据的特征(4V特征)

  • 数据规模巨大(volume)
  • 生成和处理速度极快(velocity)
  • 数据类型多样但密度较低(variety)
  • 价值巨大但密度较低(value)

3.大数据离线与实时场景

4.大数据典型应用场景及架构改进

移动计算而非移动数据

5.大数据的编年史

6.大数据技术生态

二、大数据之HDFS

1.HDFS概念与优缺点

Hadoop分布式文件系统(Hadoop Distributed File System),2003年10月Google发表了GFS(Google File System)论文,HDFS是GFS的开源实现,HDFS是Hadoop的核心子项目(一个三个核心:HDFS、YARN、MapReduce),在开源大数据体系中,地位无可替代

HDFS组成

  • NameNode(nn):存储文件的元数据,如文件名,文件目录结构,文件属性(生成时间、副本数、文件权限),以及每个文件的块列表和块所在的DataNode等。
  • DataNode(dn):在本地文件系统存储文件块数据,以及块数据的校验和。
  • Secondary NameNode(2nn):每隔一段时间对NameNode元数据备份。

HDFS优点

  • 高容错、高可用、高扩展
  • 海量数据存储:典型文件大小GB~TB,百万以上文件数量,PB以上规模数据
  • 构建成本低:构建在廉价的商用服务器上即可
  • 安全可靠:提供了容错和恢复机制
  • 适合大规模离线批处理

HDFS缺点

  • 不适合低延迟数据访问
  • **不支持并发写入:**一个文件同时只能有一个写入者
  • 不适合大量小文件存储
  • 不支持文件随机修改

2.HDFS架构

3.HDFS数据存储Block-DataNode

4.HDFS元数据存储-NameNode

5.HDFS读写流程

6.HDFS安全模式

7.HDFS基本用法

相关推荐
forestsea1 小时前
【Elasticsearch】聚合分析:度量聚合
大数据·elasticsearch·搜索引擎
小石潭记丶1 小时前
ES设置证书和创建用户,kibana连接es
大数据·elasticsearch·jenkins
SelectDB技术团队11 小时前
金融场景 PB 级大规模日志平台:中信银行信用卡中心从 Elasticsearch 到 Apache Doris 的先进实践
大数据·elasticsearch·金融·doris·日志分析
MXsoft61811 小时前
华为E9000刀箱服务器监控指标解读
大数据·运维
cr725812 小时前
MCP Server 开发实战:无缝对接 LLM 和 Elasticsearch
大数据·elasticsearch·搜索引擎
codeBrute12 小时前
Elasticsearch的经典面试题及详细解答
大数据·elasticsearch·搜索引擎
中科岩创13 小时前
广东某海水取排水管线工程边坡自动化监测
大数据·物联网
AI量化投资实验室14 小时前
deap系统重构,再新增一个新的因子,年化39.1%,卡玛提升至2.76(附python代码)
大数据·人工智能·重构
SelectDB15 小时前
Apache Doris 2.1.8 版本正式发布
大数据·数据库·数据分析