Hadoop

一、大数据诞生背景

1.传统数据处理架构存在问题

|----------|-------------|---------------|-------------------------------------------|
| | 数据结构类型 | 数据库类型 | 在大数据背景下会产生的问题 |
| 传统数据处理架构 | 结构化数据 | 数据库,数据仓库 | 单机处理速度慢。MPP架构存在扩展性,热点问题 |
| 传统数据处理架构 | 非结构化、半结构化数据 | NoSQL数据库、并发程序 | NoSQL数据库只负责存储,程序处理时涉及到数据移动,数据移动的网络开销大,速度慢 |

2.大数据的特征(4V特征)

  • 数据规模巨大(volume)
  • 生成和处理速度极快(velocity)
  • 数据类型多样但密度较低(variety)
  • 价值巨大但密度较低(value)

3.大数据离线与实时场景

4.大数据典型应用场景及架构改进

移动计算而非移动数据

5.大数据的编年史

6.大数据技术生态

二、大数据之HDFS

1.HDFS概念与优缺点

Hadoop分布式文件系统(Hadoop Distributed File System),2003年10月Google发表了GFS(Google File System)论文,HDFS是GFS的开源实现,HDFS是Hadoop的核心子项目(一个三个核心:HDFS、YARN、MapReduce),在开源大数据体系中,地位无可替代

HDFS组成

  • NameNode(nn):存储文件的元数据,如文件名,文件目录结构,文件属性(生成时间、副本数、文件权限),以及每个文件的块列表和块所在的DataNode等。
  • DataNode(dn):在本地文件系统存储文件块数据,以及块数据的校验和。
  • Secondary NameNode(2nn):每隔一段时间对NameNode元数据备份。

HDFS优点

  • 高容错、高可用、高扩展
  • 海量数据存储:典型文件大小GB~TB,百万以上文件数量,PB以上规模数据
  • 构建成本低:构建在廉价的商用服务器上即可
  • 安全可靠:提供了容错和恢复机制
  • 适合大规模离线批处理

HDFS缺点

  • 不适合低延迟数据访问
  • **不支持并发写入:**一个文件同时只能有一个写入者
  • 不适合大量小文件存储
  • 不支持文件随机修改

2.HDFS架构

3.HDFS数据存储Block-DataNode

4.HDFS元数据存储-NameNode

5.HDFS读写流程

6.HDFS安全模式

7.HDFS基本用法

相关推荐
2501_941404311 小时前
绿色科技与可持续发展:科技如何推动环境保护与资源管理
大数据·人工智能
swanwei2 小时前
量子科技对核心产业的颠覆性影响及落地时间表(全文2500字)
大数据·网络·人工智能·程序人生·量子计算
isNotNullX6 小时前
数据中台有什么用?数据仓库和数据中台怎么选?
大数据·数据仓库·人工智能·数据中台
roman_日积跬步-终至千里6 小时前
【AI Engineering】Should I build this AI application?—AI应用决策框架与实践指南
大数据·人工智能
DolphinScheduler社区7 小时前
图解 Apache DolphinScheduler 如何配置飞书告警
java·大数据·开源·飞书·告警·任务调度·海豚调度
稚辉君.MCA_P8_Java7 小时前
通义千问 SpringBoot 性能优化全景设计(面向 Java 开发者)
大数据·hadoop·spring boot·分布式·架构
SeaTunnel7 小时前
Apache SeaTunnel 如何将 CDC 数据流转换为 Append-Only 模式?
大数据·开源·apache·开发者·seatunnel·转换插件
万山y7 小时前
git remote add做了什么
大数据·git·elasticsearch
六边形架构8 小时前
别再盲目地堆砌技术了!大部份大数据项目的失败,都是因为架构设计没做对!
大数据·系统架构
驾数者8 小时前
DDL实战指南:如何定义和管理动态表
大数据·sql·flink