Hadoop

一、大数据诞生背景

1.传统数据处理架构存在问题

|----------|-------------|---------------|-------------------------------------------|
| | 数据结构类型 | 数据库类型 | 在大数据背景下会产生的问题 |
| 传统数据处理架构 | 结构化数据 | 数据库,数据仓库 | 单机处理速度慢。MPP架构存在扩展性,热点问题 |
| 传统数据处理架构 | 非结构化、半结构化数据 | NoSQL数据库、并发程序 | NoSQL数据库只负责存储,程序处理时涉及到数据移动,数据移动的网络开销大,速度慢 |

2.大数据的特征(4V特征)

  • 数据规模巨大(volume)
  • 生成和处理速度极快(velocity)
  • 数据类型多样但密度较低(variety)
  • 价值巨大但密度较低(value)

3.大数据离线与实时场景

4.大数据典型应用场景及架构改进

移动计算而非移动数据

5.大数据的编年史

6.大数据技术生态

二、大数据之HDFS

1.HDFS概念与优缺点

Hadoop分布式文件系统(Hadoop Distributed File System),2003年10月Google发表了GFS(Google File System)论文,HDFS是GFS的开源实现,HDFS是Hadoop的核心子项目(一个三个核心:HDFS、YARN、MapReduce),在开源大数据体系中,地位无可替代

HDFS组成

  • NameNode(nn):存储文件的元数据,如文件名,文件目录结构,文件属性(生成时间、副本数、文件权限),以及每个文件的块列表和块所在的DataNode等。
  • DataNode(dn):在本地文件系统存储文件块数据,以及块数据的校验和。
  • Secondary NameNode(2nn):每隔一段时间对NameNode元数据备份。

HDFS优点

  • 高容错、高可用、高扩展
  • 海量数据存储:典型文件大小GB~TB,百万以上文件数量,PB以上规模数据
  • 构建成本低:构建在廉价的商用服务器上即可
  • 安全可靠:提供了容错和恢复机制
  • 适合大规模离线批处理

HDFS缺点

  • 不适合低延迟数据访问
  • **不支持并发写入:**一个文件同时只能有一个写入者
  • 不适合大量小文件存储
  • 不支持文件随机修改

2.HDFS架构

3.HDFS数据存储Block-DataNode

4.HDFS元数据存储-NameNode

5.HDFS读写流程

6.HDFS安全模式

7.HDFS基本用法

相关推荐
IT研究所8 分钟前
信创浪潮下 ITSM 的价值重构与实践赋能
大数据·运维·人工智能·安全·低代码·重构·自动化
AI职业加油站8 分钟前
Python技术应用工程师:互联网行业技能赋能者
大数据·开发语言·人工智能·python·数据分析
深蓝海域知识库16 分钟前
深蓝海域中标大型机电企业大模型知识工程平台项目
大数据·人工智能
Gain_chance16 分钟前
32-学习笔记尚硅谷数仓搭建-DWD层首日数据装载脚本及每日数据装载脚本
大数据·数据仓库·hive·笔记·学习
sheji341618 分钟前
【开题答辩全过程】以 基于hadoop的空气质量数据分析及可视化系统为例,包含答辩的问题和答案
大数据·hadoop·数据分析
CDA数据分析师干货分享25 分钟前
【干货】CDA一级知识点拆解3:《CDA一级商业数据分析》第3章 商业数据分析框架
大数据·人工智能·数据挖掘·数据分析·cda证书·cda数据分析师
紫郢剑侠28 分钟前
【C语言编程gcc@Kylin | 麒麟 】 1:实现Hello world程序
大数据·kylin
北京地铁1号线30 分钟前
4.2 幻觉抑制策略
大数据·人工智能·深度学习·大语言模型
跨境卫士—小依33 分钟前
跨境电商营销策略
大数据·人工智能·跨境电商·营销策略
Guheyunyi39 分钟前
电气安全管理系统:筑牢现代用电安全的智能防线
大数据·人工智能·科技·安全·架构·能源