Hadoop

一、大数据诞生背景

1.传统数据处理架构存在问题

|----------|-------------|---------------|-------------------------------------------|
| | 数据结构类型 | 数据库类型 | 在大数据背景下会产生的问题 |
| 传统数据处理架构 | 结构化数据 | 数据库,数据仓库 | 单机处理速度慢。MPP架构存在扩展性,热点问题 |
| 传统数据处理架构 | 非结构化、半结构化数据 | NoSQL数据库、并发程序 | NoSQL数据库只负责存储,程序处理时涉及到数据移动,数据移动的网络开销大,速度慢 |

2.大数据的特征(4V特征)

  • 数据规模巨大(volume)
  • 生成和处理速度极快(velocity)
  • 数据类型多样但密度较低(variety)
  • 价值巨大但密度较低(value)

3.大数据离线与实时场景

4.大数据典型应用场景及架构改进

移动计算而非移动数据

5.大数据的编年史

6.大数据技术生态

二、大数据之HDFS

1.HDFS概念与优缺点

Hadoop分布式文件系统(Hadoop Distributed File System),2003年10月Google发表了GFS(Google File System)论文,HDFS是GFS的开源实现,HDFS是Hadoop的核心子项目(一个三个核心:HDFS、YARN、MapReduce),在开源大数据体系中,地位无可替代

HDFS组成

  • NameNode(nn):存储文件的元数据,如文件名,文件目录结构,文件属性(生成时间、副本数、文件权限),以及每个文件的块列表和块所在的DataNode等。
  • DataNode(dn):在本地文件系统存储文件块数据,以及块数据的校验和。
  • Secondary NameNode(2nn):每隔一段时间对NameNode元数据备份。

HDFS优点

  • 高容错、高可用、高扩展
  • 海量数据存储:典型文件大小GB~TB,百万以上文件数量,PB以上规模数据
  • 构建成本低:构建在廉价的商用服务器上即可
  • 安全可靠:提供了容错和恢复机制
  • 适合大规模离线批处理

HDFS缺点

  • 不适合低延迟数据访问
  • **不支持并发写入:**一个文件同时只能有一个写入者
  • 不适合大量小文件存储
  • 不支持文件随机修改

2.HDFS架构

3.HDFS数据存储Block-DataNode

4.HDFS元数据存储-NameNode

5.HDFS读写流程

6.HDFS安全模式

7.HDFS基本用法

相关推荐
天硕国产存储技术站11 小时前
DualPLP 双重掉电保护赋能 天硕工业级SSD筑牢关键领域安全存储方案
大数据·人工智能·安全·固态硬盘
雷文成.思泉软件11 小时前
以ERP为核心、企微为门户,实现一体化集成
大数据·低代码·创业创新
东哥说-MES|从入门到精通12 小时前
数字化部分内容 | 十四五年规划和2035年远景目标纲要(新华社正式版)
大数据·人工智能·数字化转型·mes·数字化工厂·2035·十四五规划
南飞测绘视界13 小时前
上市公司绿色专利申请、授权数据(1999-2024年)
大数据·专利·上市公司
一个天蝎座 白勺 程序猿14 小时前
KingbaseES在政务领域的应用实践——武汉人社大数据平台“数字化服务新模式”
大数据·数据库·政务·kingbasees·金仓数据库
pale_moonlight14 小时前
十、 Scala 应用实践 (上)
大数据·开发语言·scala
第二只羽毛15 小时前
遵守robots协议的友好爬虫
大数据·爬虫·python·算法·网络爬虫
Elastic 中国社区官方博客15 小时前
使用 A2A 协议和 MCP 在 Elasticsearch 中创建一个 LLM agent 新闻室:第二部分
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
安达发公司16 小时前
安达发|告别手工排产!车间排产软件成为中央厨房的“最强大脑”
大数据·人工智能·aps高级排程·aps排程软件·安达发aps·车间排产软件
武子康16 小时前
大数据-166 Apache Kylin 1.6 Streaming Cubing 实战:Kafka 到分钟级 OLAP
大数据·后端·apache kylin