数据挖掘分析的一点进步分享

复制代码
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np

data = pd.read_csv('heros.csv',encoding="gbk")
data.head()

导入数据集 进行分析

复制代码
df_data=data.copy()
df_data.describe()
复制代码
df_data.info()
复制代码
df_data.drop('英雄',axis=1,inplace=True)
df_data['最大攻速']=df_data['最大攻速'].apply(lambda str: str.replace('%',''))
from sklearn import preprocessing

for feature in ['初始法力','最高物攻']:
    le = preprocessing.LabelEncoder()
    le.fit(df_data[feature])
    df_data[feature] = le.transform(df_data[feature])
features = df_data.columns.values.tolist()
import seaborn as sns

sns.heatmap(df_data[features].corr(),linewidths=0.1, vmax=1.0, square=True,
            cmap=sns.color_palette('RdBu', n_colors=256),
            linecolor='white', annot=True)
plt.title('the feature of corr')
plt.show()

这里的代码其实还有一点不足 需要进行优化 这里给同学们进步的空间进行改成(提示:需要看看前面倒库有没有具体化)

复制代码
df_data=df_data[features]
df_data.head()
复制代码
from sklearn.preprocessing import StandardScaler
stas = StandardScaler()
df_data = stas.fit_transform(df_data)
df_data
复制代码
from sklearn.cluster import KMeans #导入kmeans算法库
n_clusters=3  #设置聚类结果的类簇
kmean = KMeans(n_clusters) #设定算法为KMeans算法
df_data_kmeans=df_data.copy()
kmean.fit(df_data_kmeans)  #进行聚类算法训练
KMeans(algorithm='auto', copy_x=True, init='k-means++', max_iter=300,
       n_clusters=3, n_init=10, n_jobs=None, precompute_distances='auto',
       random_state=None, tol=0.0001, verbose=0)
labels = kmean.labels_  #输出每一样本的聚类的类簇标签
centers = kmean.cluster_centers_  #输出聚类的类簇中心点
print ('各类簇标签值:', labels)
print ('各类簇中心:', centers)
复制代码
from scipy.spatial.distance import cdist
import numpy as np
#类簇的数量2到9
clusters = range(2, 10) 
#距离函数
distances_sum = []
 
for k in clusters:
    kmeans_model = KMeans(n_clusters = k).fit(df_data_kmeans) #对不同取值k进行训练
    #计算各对象离各类簇中心的欧氏距离,生成距离表
    distances_point = cdist(df_data_kmeans, kmeans_model.cluster_centers_, 'euclidean')
    #提取每个对象到其类簇中心的距离(该距离最短,所以用min函数),并相加。
    distances_cluster = sum(np.min(distances_point,axis=1))
    #依次存入range(2, 10)的距离结果
    distances_sum.append(distances_cluster)  
plt.plot(clusters, distances_sum, 'bx-')  #画出不同聚类结果下的距离总和
# 设置坐标轴的label
plt.xlabel('k')  
plt.ylabel('distances')
plt.show() 
复制代码
from sklearn.cluster import KMeans #导入kmeans算法库
n_clusters=5  #设置聚类结果的类簇
kmean = KMeans(n_clusters) #设定算法为KMeans算法
df_data_kmeans=df_data.copy()
kmean.fit(df_data_kmeans)  #进行聚类算法训练
labels = kmean.labels_  #输出每一样本的聚类的类簇标签
centers = kmean.cluster_centers_  #输出聚类的类簇中心点
print ('各类簇标签值:', labels)
print ('各类簇中心:', centers)
复制代码
kmeans_result=data.copy()
#将分组结果输出到原始数据集中
kmeans_result.insert(0,'分组',labels)

kmeans_result
复制代码
"""根据轮廓系数计算模型得分"""
from sklearn.metrics import silhouette_score
score=silhouette_score(df_data_kmeans,labels,metric='euclidean')
score
0.2939377309323035
from sklearn import metrics
y_pred=kmean.predict(df_data_kmeans)
metrics.calinski_harabasz_score(df_data_kmeans,y_pred)
26.680175815073525
from sklearn.cluster import AgglomerativeClustering #导入凝聚型算法库
n_clusters=5  #设置聚类结果的类簇

 #设定算法为AGNES算法,距离度量为最小距离
ward = AgglomerativeClustering(n_clusters, linkage='ward')
df_data_ward=df_data.copy()
ward.fit(df_data_ward)  #进行聚类算法训练
相关推荐
PPIO派欧云1 小时前
PPIO上新GPU实例模板,一键部署PaddleOCR-VL
人工智能
沙威玛_LHE1 小时前
树和二叉树
数据结构·算法
py有趣2 小时前
LeetCode算法学习之两数之和 II - 输入有序数组
学习·算法·leetcode
TGITCIC2 小时前
金融RAG落地之痛:不在模型,而在数据结构
人工智能·ai大模型·ai agent·ai智能体·开源大模型·金融ai·金融rag
夏鹏今天学习了吗3 小时前
【LeetCode热题100(62/100)】搜索二维矩阵
算法·leetcode·矩阵
吃着火锅x唱着歌5 小时前
LeetCode 1128.等价多米诺骨牌对的数量
算法·leetcode·职场和发展
十八岁讨厌编程5 小时前
【算法训练营 · 补充】LeetCode Hot100(中)
算法·leetcode
橘颂TA5 小时前
【剑斩OFFER】算法的暴力美学——最小覆盖字串
算法·c/c++·就业
wearegogog1235 小时前
基于混合蛙跳算法和漏桶算法的无线传感器网络拥塞控制与分簇新方法
网络·算法
chenzhiyuan20186 小时前
《十五五规划》下的AI边缘计算机遇:算力下沉与工业智能化
人工智能·边缘计算