数据挖掘分析的一点进步分享

复制代码
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np

data = pd.read_csv('heros.csv',encoding="gbk")
data.head()

导入数据集 进行分析

复制代码
df_data=data.copy()
df_data.describe()
复制代码
df_data.info()
复制代码
df_data.drop('英雄',axis=1,inplace=True)
df_data['最大攻速']=df_data['最大攻速'].apply(lambda str: str.replace('%',''))
from sklearn import preprocessing

for feature in ['初始法力','最高物攻']:
    le = preprocessing.LabelEncoder()
    le.fit(df_data[feature])
    df_data[feature] = le.transform(df_data[feature])
features = df_data.columns.values.tolist()
import seaborn as sns

sns.heatmap(df_data[features].corr(),linewidths=0.1, vmax=1.0, square=True,
            cmap=sns.color_palette('RdBu', n_colors=256),
            linecolor='white', annot=True)
plt.title('the feature of corr')
plt.show()

这里的代码其实还有一点不足 需要进行优化 这里给同学们进步的空间进行改成(提示:需要看看前面倒库有没有具体化)

复制代码
df_data=df_data[features]
df_data.head()
复制代码
from sklearn.preprocessing import StandardScaler
stas = StandardScaler()
df_data = stas.fit_transform(df_data)
df_data
复制代码
from sklearn.cluster import KMeans #导入kmeans算法库
n_clusters=3  #设置聚类结果的类簇
kmean = KMeans(n_clusters) #设定算法为KMeans算法
df_data_kmeans=df_data.copy()
kmean.fit(df_data_kmeans)  #进行聚类算法训练
KMeans(algorithm='auto', copy_x=True, init='k-means++', max_iter=300,
       n_clusters=3, n_init=10, n_jobs=None, precompute_distances='auto',
       random_state=None, tol=0.0001, verbose=0)
labels = kmean.labels_  #输出每一样本的聚类的类簇标签
centers = kmean.cluster_centers_  #输出聚类的类簇中心点
print ('各类簇标签值:', labels)
print ('各类簇中心:', centers)
复制代码
from scipy.spatial.distance import cdist
import numpy as np
#类簇的数量2到9
clusters = range(2, 10) 
#距离函数
distances_sum = []
 
for k in clusters:
    kmeans_model = KMeans(n_clusters = k).fit(df_data_kmeans) #对不同取值k进行训练
    #计算各对象离各类簇中心的欧氏距离,生成距离表
    distances_point = cdist(df_data_kmeans, kmeans_model.cluster_centers_, 'euclidean')
    #提取每个对象到其类簇中心的距离(该距离最短,所以用min函数),并相加。
    distances_cluster = sum(np.min(distances_point,axis=1))
    #依次存入range(2, 10)的距离结果
    distances_sum.append(distances_cluster)  
plt.plot(clusters, distances_sum, 'bx-')  #画出不同聚类结果下的距离总和
# 设置坐标轴的label
plt.xlabel('k')  
plt.ylabel('distances')
plt.show() 
复制代码
from sklearn.cluster import KMeans #导入kmeans算法库
n_clusters=5  #设置聚类结果的类簇
kmean = KMeans(n_clusters) #设定算法为KMeans算法
df_data_kmeans=df_data.copy()
kmean.fit(df_data_kmeans)  #进行聚类算法训练
labels = kmean.labels_  #输出每一样本的聚类的类簇标签
centers = kmean.cluster_centers_  #输出聚类的类簇中心点
print ('各类簇标签值:', labels)
print ('各类簇中心:', centers)
复制代码
kmeans_result=data.copy()
#将分组结果输出到原始数据集中
kmeans_result.insert(0,'分组',labels)

kmeans_result
复制代码
"""根据轮廓系数计算模型得分"""
from sklearn.metrics import silhouette_score
score=silhouette_score(df_data_kmeans,labels,metric='euclidean')
score
0.2939377309323035
from sklearn import metrics
y_pred=kmean.predict(df_data_kmeans)
metrics.calinski_harabasz_score(df_data_kmeans,y_pred)
26.680175815073525
from sklearn.cluster import AgglomerativeClustering #导入凝聚型算法库
n_clusters=5  #设置聚类结果的类簇

 #设定算法为AGNES算法,距离度量为最小距离
ward = AgglomerativeClustering(n_clusters, linkage='ward')
df_data_ward=df_data.copy()
ward.fit(df_data_ward)  #进行聚类算法训练
相关推荐
想你依然心痛6 分钟前
编程算法:技术创新与业务增长的核心驱动力
算法
机器之心12 分钟前
谷歌约战,DeepSeek、Kimi都要上,首届大模型对抗赛明天开战
人工智能
POLOAPI13 分钟前
告别敲代码?Claude Code 让命令行自己 “写指令”,AI 正在重构程序员的双手
人工智能·api
俞凡18 分钟前
IDE 革命:超越自动完成
人工智能
焊锡与代码齐飞26 分钟前
嵌入式第十八课!!数据结构篇入门及单向链表
c语言·数据结构·学习·算法·链表·排序算法
AI松子66629 分钟前
Sparse4D系列算法:迈向长时序稀疏化3D目标检测的新实践
人工智能·算法·目标检测
数据知道41 分钟前
使用GPT机器翻译详解,及对应实现翻译的3个案例
人工智能·gpt·机器翻译
陈哥聊测试41 分钟前
Coze开源了!意味着什么
人工智能·开源·资讯
仪器科学与传感技术博士43 分钟前
python:如何调节机器学习算法的鲁棒性,以支持向量机SVM为例,让伙伴们看的更明白
python·算法·机器学习
幻风_huanfeng44 分钟前
自然语言理解领域算法模型演进图谱
算法