OpenAI新研究破解GPT-4大脑,分解1600万个特征打开“黑匣子”,Ilya 、Jan Leike也参与了!

https://cdn.openai.com/papers/sparse-autoencoders.pdf

这份论文探讨了稀疏自编码器(SAE)在语言模型中的应用,旨在从语言模型中提取可解释的特征。论文的主要贡献包括:
1. 训练方法

  • 提出了一种训练大型稀疏自编码器的新方法,该方法能够有效地控制稀疏性,并减少"死"潜在特征的数量。
  • 使用了 TopK 激活函数,直接控制潜在特征的活跃数量,简化了模型调优,并改善了重建-稀疏性权衡。
  • 引入了辅助损失函数,用于减少"死"潜在特征的数量。
    2. 规模定律
  • 系统地研究了稀疏自编码器的规模定律,包括潜在特征数量、稀疏性和语言模型规模之间的关系。
  • 发现了清晰的规模定律,并训练了一个包含 1600 万潜在特征的 SAE,用于 GPT-4 激活。
    3. 特征质量评估
  • 引入了一系列新的指标,用于评估潜在特征的质量,包括:
    • 下游损失:评估 SAE 重建的潜在特征对语言模型行为的影响。
    • 探测损失:评估 SAE 是否能够恢复假设的特征。
    • 可解释性:评估潜在特征的激活模式是否可以解释。
    • 消融稀疏性:评估消融单个潜在特征对下游 logits 的影响是否稀疏。
  • 发现大型稀疏自编码器通常在这些指标上表现更好。
    4. TopK 激活函数
  • 解释了 TopK 激活函数如何避免激活收缩,并优于其他激活函数。
  • 研究了 TopK 激活函数的渐进恢复特性,并提出了 Multi-TopK 方法来改善其泛化能力。
    5. 未来方向
  • 讨论了稀疏自编码器的局限性,并提出了未来的改进方向,例如:
    • 使用更灵活的潜在特征数量约束。
    • 改进优化方法。
    • 研究更有效的特征质量评估指标。
    • 探索将 MoE 与自编码器结合的方法。
    • 研究 GPT-4 中发现的复杂特征。
      总结
      这份论文为训练大型稀疏自编码器并评估其特征质量提供了重要的见解和方法。稀疏自编码器在语言模型的可解释性研究中具有巨大的潜力,并为理解语言模型的内部机制提供了新的工具。
相关推荐
时见先生1 小时前
Python库和conda搭建虚拟环境
开发语言·人工智能·python·自然语言处理·conda
昨夜见军贴06163 小时前
IACheck AI审核在生产型企业质量控制记录中的实践探索——全面赋能有关物质研究合规升级
大数据·人工智能
智星云算力4 小时前
智星云镜像共享全流程指南,附避坑手册(新手必看)
人工智能
盖雅工场4 小时前
驱动千店销售转化提升10%:3C零售门店的人效优化实战方案
大数据·人工智能·零售·数字化管理·智能排班·零售排班
Loo国昌4 小时前
深入理解 FastAPI:Python高性能API框架的完整指南
开发语言·人工智能·后端·python·langchain·fastapi
发哥来了4 小时前
【AI视频创作】【评测】【核心能力与成本效益】
大数据·人工智能
醉舞经阁半卷书14 小时前
Python机器学习常用库快速精通
人工智能·python·深度学习·机器学习·数据挖掘·数据分析·scikit-learn
码农水水5 小时前
米哈游Java面试被问:机器学习模型的在线服务和A/B测试
java·开发语言·数据库·spring boot·后端·机器学习·word
产品何同学5 小时前
在线问诊医疗APP如何设计?2套原型拆解与AI生成原型图实战
人工智能·产品经理·健康医疗·在线问诊·app原型·ai生成原型图·医疗app
星爷AG I5 小时前
9-14 知觉整合(AGI基础理论)
人工智能·agi