OpenAI新研究破解GPT-4大脑,分解1600万个特征打开“黑匣子”,Ilya 、Jan Leike也参与了!

https://cdn.openai.com/papers/sparse-autoencoders.pdf

这份论文探讨了稀疏自编码器(SAE)在语言模型中的应用,旨在从语言模型中提取可解释的特征。论文的主要贡献包括:
1. 训练方法

  • 提出了一种训练大型稀疏自编码器的新方法,该方法能够有效地控制稀疏性,并减少"死"潜在特征的数量。
  • 使用了 TopK 激活函数,直接控制潜在特征的活跃数量,简化了模型调优,并改善了重建-稀疏性权衡。
  • 引入了辅助损失函数,用于减少"死"潜在特征的数量。
    2. 规模定律
  • 系统地研究了稀疏自编码器的规模定律,包括潜在特征数量、稀疏性和语言模型规模之间的关系。
  • 发现了清晰的规模定律,并训练了一个包含 1600 万潜在特征的 SAE,用于 GPT-4 激活。
    3. 特征质量评估
  • 引入了一系列新的指标,用于评估潜在特征的质量,包括:
    • 下游损失:评估 SAE 重建的潜在特征对语言模型行为的影响。
    • 探测损失:评估 SAE 是否能够恢复假设的特征。
    • 可解释性:评估潜在特征的激活模式是否可以解释。
    • 消融稀疏性:评估消融单个潜在特征对下游 logits 的影响是否稀疏。
  • 发现大型稀疏自编码器通常在这些指标上表现更好。
    4. TopK 激活函数
  • 解释了 TopK 激活函数如何避免激活收缩,并优于其他激活函数。
  • 研究了 TopK 激活函数的渐进恢复特性,并提出了 Multi-TopK 方法来改善其泛化能力。
    5. 未来方向
  • 讨论了稀疏自编码器的局限性,并提出了未来的改进方向,例如:
    • 使用更灵活的潜在特征数量约束。
    • 改进优化方法。
    • 研究更有效的特征质量评估指标。
    • 探索将 MoE 与自编码器结合的方法。
    • 研究 GPT-4 中发现的复杂特征。
      总结
      这份论文为训练大型稀疏自编码器并评估其特征质量提供了重要的见解和方法。稀疏自编码器在语言模型的可解释性研究中具有巨大的潜力,并为理解语言模型的内部机制提供了新的工具。
相关推荐
志栋智能12 小时前
AI驱动的监控系统自动化巡检:从“告警噪音”到“业务洞察”的智能跃迁
运维·人工智能·网络安全·云原生·自动化
X54先生(人文科技)12 小时前
《元创力-碳硅对位协同篇》第五章:记忆的根系与仙女的陶罐——论碳硅协同记忆链的校准仪式
人工智能·团队开发·ai写作·零知识证明
向上的车轮12 小时前
宇树科技 CEO 王兴兴所说的“具身智能时代的牛顿还没诞生”
人工智能·科技
ASKED_201913 小时前
大模型注意力机制:从数学原理到资源优化框架
人工智能
王解13 小时前
AI生成PPT的技术演进:从智能填充到认知增强
人工智能·powerpoint
一切尽在,你来13 小时前
LangGraph 概览
人工智能·python·langchain·ai编程
JQLvopkk15 小时前
能用C#开发AI
开发语言·人工智能·c#
郝学胜-神的一滴16 小时前
当AI遇见架构:Vibe Coding时代的设计模式复兴
开发语言·数据结构·人工智能·算法·设计模式·架构
Clarence Liu21 小时前
用大白话讲解人工智能(4) Softmax回归:AI如何给选项“打分排序“
人工智能·数据挖掘·回归
教男朋友学大模型1 天前
Agent效果该怎么评估?
大数据·人工智能·经验分享·面试·求职招聘