OpenAI新研究破解GPT-4大脑,分解1600万个特征打开“黑匣子”,Ilya 、Jan Leike也参与了!

https://cdn.openai.com/papers/sparse-autoencoders.pdf

这份论文探讨了稀疏自编码器(SAE)在语言模型中的应用,旨在从语言模型中提取可解释的特征。论文的主要贡献包括:
1. 训练方法

  • 提出了一种训练大型稀疏自编码器的新方法,该方法能够有效地控制稀疏性,并减少"死"潜在特征的数量。
  • 使用了 TopK 激活函数,直接控制潜在特征的活跃数量,简化了模型调优,并改善了重建-稀疏性权衡。
  • 引入了辅助损失函数,用于减少"死"潜在特征的数量。
    2. 规模定律
  • 系统地研究了稀疏自编码器的规模定律,包括潜在特征数量、稀疏性和语言模型规模之间的关系。
  • 发现了清晰的规模定律,并训练了一个包含 1600 万潜在特征的 SAE,用于 GPT-4 激活。
    3. 特征质量评估
  • 引入了一系列新的指标,用于评估潜在特征的质量,包括:
    • 下游损失:评估 SAE 重建的潜在特征对语言模型行为的影响。
    • 探测损失:评估 SAE 是否能够恢复假设的特征。
    • 可解释性:评估潜在特征的激活模式是否可以解释。
    • 消融稀疏性:评估消融单个潜在特征对下游 logits 的影响是否稀疏。
  • 发现大型稀疏自编码器通常在这些指标上表现更好。
    4. TopK 激活函数
  • 解释了 TopK 激活函数如何避免激活收缩,并优于其他激活函数。
  • 研究了 TopK 激活函数的渐进恢复特性,并提出了 Multi-TopK 方法来改善其泛化能力。
    5. 未来方向
  • 讨论了稀疏自编码器的局限性,并提出了未来的改进方向,例如:
    • 使用更灵活的潜在特征数量约束。
    • 改进优化方法。
    • 研究更有效的特征质量评估指标。
    • 探索将 MoE 与自编码器结合的方法。
    • 研究 GPT-4 中发现的复杂特征。
      总结
      这份论文为训练大型稀疏自编码器并评估其特征质量提供了重要的见解和方法。稀疏自编码器在语言模型的可解释性研究中具有巨大的潜力,并为理解语言模型的内部机制提供了新的工具。
相关推荐
Rabbit_QL2 分钟前
【LLM背景】语言模型简史:从概率统计到通用智能接口
人工智能·语言模型·自然语言处理
分享牛3 分钟前
LangChain4j从入门到精通-3-聊天与语言模型
人工智能·语言模型·自然语言处理
EasyCVR3 分钟前
解析视频融合平台EasyCVR视频智能分析技术背后的技术支撑
人工智能·音视频
renhongxia13 分钟前
多模型协作定律:大型语言模型模型集成的缩放极限
人工智能·信息可视化·语言模型·自然语言处理·数据分析
Coder_Boy_8 分钟前
基于SpringAI的在线考试系统-考试管理功能布局+交互优化方案
java·数据库·人工智能·spring boot·交互·ddd·tdd
marteker10 分钟前
通用人工智能应用程序的兴起
人工智能·chatgpt
易晨 微盛·企微管家11 分钟前
2025企业微信智能表格实操指南:从数据整理到业务提效
大数据·人工智能·企业微信
一个帅气昵称啊12 分钟前
.Net C# AI 如何实现联网搜索
人工智能·c#·.net
老蒋每日coding12 分钟前
AI Agent 设计模式系列(十三)—— 人机协同模式
人工智能·设计模式·langchain