Matlab|遗传粒子群-混沌粒子群-基本粒子群

目录

[1 主要内容](#1 主要内容)

[2 部分代码](#2 部分代码)

[3 效果图](#3 效果图)

[4 下载链接](#4 下载链接)


1 主要内容

很多同学在发文章时候最犯愁的就是创新点创新点创新点(重要的事情说三遍),对于采用智能算法的模型,可以采用算法改进的方式来达到提高整个文章创新水平的目的,本篇分享一个效果比较好的粒子群三种算法实现代码,并给出测试函数的对比效果,以供有需要的同学学习。

本次分享的程序是遗传粒子群、混沌粒子群和基本粒子群的算法实现和效果对比,智能算法的创新以组合创新居多,通过两种或多种方法的优势结合从而实现算法优势叠加或者弥补劣势的目的,在算法寻优性能包括寻优速度、跳出局部最优等方面表现更加突出。

2 部分代码

复制代码
clc
clear
%杂交概率:Pc
%杂交池大小比例:Sp
%最大迭代次数:M
%问题的维数:D
%目标函数取最小值时的自变量值:xm
%目标函数的最小值:fv
PSO;
CPSO;
%% 参数初始化
%粒子群算法中的两个参数
c1 = 1.49445;%学习因子
c2 = 1.49445;%学习因子
wmax=0.9;%惯性因子最大值
wmin=0.4;%惯性因子最小值
D=10;%粒子维数
pc=0.5;%杂交概率
maxgen=1000;   % 迭代次数  
sizepop=20;   %种群规模
pm=0.05;%变异概率
Vmax=1;
Vmin=-1;
popmax=3;
popmin=-3;
randdata1= xlsread('randdata1');
randdata2= xlsread('randdata2');
%% 产生初始粒子和速度
for i=1:sizepop
    %随机产生一个种群
    pop(i,:)=randdata1(1,:);    %初始化粒子位置
    V(i,:)=randdata2(1,:);  %初始化粒子速度
    %pop(i,:)=rands(1,D);    %初始种群
    %V(i,:)=rands(1,D);  %初始化速度
    fitness(i)=fun(pop(i,:));   %计算每个粒子的适应度值
end
​
%% 个体极值和群体极值
[bestfitness bestindex]=min(fitness);
zbest=pop(bestindex,:);   %全局最佳
gbest=pop;    %个体最佳
fitnessgbest=fitness;   %个体最佳适应度值
fitnesszbest=bestfitness;   %全局最佳适应度值

3 效果图

通过改变fun.m中目标测试函数,就能得到不同测试函数的算法对比图。

4 下载链接

相关推荐
曹勖之1 天前
UE 5 和simulink联合仿真,如果先在UE5这一端结束Play,过一段时间以后**Unreal Engine 5** 中会出现显存不足错误
matlab·ue5·机器人
曹勖之1 天前
simulink有无现成模块可以实现将三个分开的输入合并为一个[1*3]的行向量输出?
matlab
机器学习之心1 天前
Transformer-BiGRU多变量时序预测(Matlab完整源码和数据)
深度学习·matlab·transformer·bigru
slandarer2 天前
MATLAB | 绘图复刻(十九)| 轻松拿捏 Nature Communications 绘图
开发语言·matlab
【杨(_> <_)】2 天前
信号处理分析工具——时频分析(一)
算法·matlab·信号处理
曹勖之2 天前
在MATLAB中使用自定义的ROS2消息
开发语言·matlab·机器人·ros·simulink·ros2
我爱C编程3 天前
基于QPSK调制解调+Polar编译码(SCL译码)的matlab性能仿真,并对比BPSK
matlab·qpsk·polar编译码·scl译码
bubiyoushang8883 天前
matlab实现高斯烟羽模型算法
开发语言·算法·matlab
tyatyatya3 天前
MATLAB 中调整超参数的系统性方法
开发语言·matlab
Expecto04 天前
Matlab数值计算
matlab·数值计算