Matlab|遗传粒子群-混沌粒子群-基本粒子群

目录

[1 主要内容](#1 主要内容)

[2 部分代码](#2 部分代码)

[3 效果图](#3 效果图)

[4 下载链接](#4 下载链接)


1 主要内容

很多同学在发文章时候最犯愁的就是创新点创新点创新点(重要的事情说三遍),对于采用智能算法的模型,可以采用算法改进的方式来达到提高整个文章创新水平的目的,本篇分享一个效果比较好的粒子群三种算法实现代码,并给出测试函数的对比效果,以供有需要的同学学习。

本次分享的程序是遗传粒子群、混沌粒子群和基本粒子群的算法实现和效果对比,智能算法的创新以组合创新居多,通过两种或多种方法的优势结合从而实现算法优势叠加或者弥补劣势的目的,在算法寻优性能包括寻优速度、跳出局部最优等方面表现更加突出。

2 部分代码

复制代码
clc
clear
%杂交概率:Pc
%杂交池大小比例:Sp
%最大迭代次数:M
%问题的维数:D
%目标函数取最小值时的自变量值:xm
%目标函数的最小值:fv
PSO;
CPSO;
%% 参数初始化
%粒子群算法中的两个参数
c1 = 1.49445;%学习因子
c2 = 1.49445;%学习因子
wmax=0.9;%惯性因子最大值
wmin=0.4;%惯性因子最小值
D=10;%粒子维数
pc=0.5;%杂交概率
maxgen=1000;   % 迭代次数  
sizepop=20;   %种群规模
pm=0.05;%变异概率
Vmax=1;
Vmin=-1;
popmax=3;
popmin=-3;
randdata1= xlsread('randdata1');
randdata2= xlsread('randdata2');
%% 产生初始粒子和速度
for i=1:sizepop
    %随机产生一个种群
    pop(i,:)=randdata1(1,:);    %初始化粒子位置
    V(i,:)=randdata2(1,:);  %初始化粒子速度
    %pop(i,:)=rands(1,D);    %初始种群
    %V(i,:)=rands(1,D);  %初始化速度
    fitness(i)=fun(pop(i,:));   %计算每个粒子的适应度值
end
​
%% 个体极值和群体极值
[bestfitness bestindex]=min(fitness);
zbest=pop(bestindex,:);   %全局最佳
gbest=pop;    %个体最佳
fitnessgbest=fitness;   %个体最佳适应度值
fitnesszbest=bestfitness;   %全局最佳适应度值

3 效果图

通过改变fun.m中目标测试函数,就能得到不同测试函数的算法对比图。

4 下载链接

相关推荐
其实吧35 小时前
基于Matlab的图像融合研究设计
人工智能·计算机视觉·matlab
Matlab程序猿小助手13 小时前
【MATLAB源码-第208期】基于matlab的改进A*算法和传统A*算法对比仿真;改进点:1.无斜穿障碍物顶点2.删除中间多余节点,减少转折。
开发语言·嵌入式硬件·算法·matlab·机器人
IT猿手17 小时前
基于卷积神经网络(CNN)的时间序列预测,15个输入1个输出,可以更改数据集,MATLAB代码
人工智能·深度学习·神经网络·算法·matlab·cnn
其实吧321 小时前
基于MATLAB的运动车辆跟踪检测系统
开发语言·matlab
梦里水乡8571 天前
基于MATLAB的农业病虫害识别研究
开发语言·matlab
墨痕_7771 天前
论文阅读笔记Dense Passage Retrieval for Open-Domain Question Answering
matlab
真的是我22 天前
基于MATLAB课程设计-图像处理完整版
图像处理·人工智能·计算机视觉·matlab
顶呱呱程序2 天前
2-140 基于Solidworks和Matlab Simulink Simscape仿真的机器人手臂仿真
开发语言·matlab·机器人·simulink·simscape·机器人手臂仿真
ULTRA??2 天前
随机生成100组N个数并对比,C++,python,matlab,pair,std::piecewise_construct
开发语言·c++·python·matlab
陌夏微秋2 天前
硬件基础06 滤波器——无源、有源(含Filter Solutions、Filter Pro、MATLAB Fdatool)
matlab·硬件工程·信息与通信·信号处理