基于R语言BIOMOD2 及机器学习方法的物种分布模拟与案例分析

原文链接:基于R语言BIOMOD2 及机器学习方法的物种分布模拟与案例分析https://mp.weixin.qq.com/s?__biz=MzUzNTczMDMxMg==&mid=2247606139&idx=4&sn=f94ec30bfb5fa7ac0320403d49db3b66&chksm=fa821e9ccdf5978a44a9ba96f6e04a121c0bbf63beea0940b385011c0bf5be54c56993c1b61a&token=296806589&lang=zh_CN#rd第一:引入和理论基础

生态模型基础:生态模型的基本和物种分布模型(SDMs)的重要性。

biomod2:探讨biomod2的历史、发展和主要功能。

R语言重点工具入门:数据输入与输出、科学计算、地理数据分析、数据可视化等功能。

第二:数据获取与预处理

常见地球科学数据(数据特点与获取途径):

(1)物种分布数据;

(2)环境变量(站点数据、遥感数据)。

基于R语言的数据预处理:

(1)数据提取:根据需求批量提取相关数据;

(2)数据清洗:数据清洗的原则与方法;

(3)特征变量选择:通过相关性分析、主成分分析(PCA)等方法选择具有代表性的特征变量,提高模型效率。

第三: 模型的建立与评估

机器学习与R语言实践

(1)机器学习原理;(2)常见机器学习算法与流程

基于单一机器学习算法的物种分布特征模拟(以最大熵算法为例)。

biomod2程序包与使用:原理、构成

实际操作:构建第一个物种分布模型,包括选择模型类型和调整参数。

模型评估方法:通过ROC曲线、AUC值等方法评估模型的有效性和准确性。

第四: 模型优化与多模型集成

典型算法参数优化:对随机森林、最大熵等算法进行参数优化,提高模型性能。

集成方法:结合多个模型提高预测结果的稳定性和准确性。

物种分布特征预测: 基于单一模型与集成模型预测物种未来分布特征。

实战:参与者使用自己的数据或示例数据集,尝试实现多模型集成。

第五: 结果分析和案例研究

结果分析:物种分布特征、环境变量与物种分布关系、未来分布特征预测。

科学制图:栅格图、柱状图、降维结果图等。

案例研究:分析物种分布案例,如何应用学到的技能和知识。

相关推荐
木与长清27 分钟前
利用MetaNeighbor验证重复性和跨物种分群
矩阵·数据分析·r语言
关关钧28 分钟前
【R语言】数学运算
开发语言·r语言
Tiger Z33 分钟前
R 语言科研绘图 --- 散点图-汇总
人工智能·程序人生·r语言·贴图
CASAIM3 小时前
手持式三维激光扫描仪-3D扫描产品尺寸
3d·信息可视化
机器懒得学习9 小时前
如何用Python和Dash打造一个智能股票筛选与可视化系统
信息可视化·dash
anyup_前端梦工厂19 小时前
ECharts 海量数据渲染性能优化方案
信息可视化·性能优化·echarts
千亿的星空20 小时前
以 RFID 为钥,开启民兵装备管理的科技之门
大数据·信息可视化·信息与通信·数据库开发·可信计算技术
熊猫烧竹1 天前
【柱状图】——18
python·信息可视化·数据分析
拥有一颗学徒的心2 天前
鸿蒙开发中的骨架图:提升用户体验的关键一环
华为·信息可视化·人机交互·harmonyos·ux·sketch
糯米导航2 天前
精选100+套HTML可视化大屏模板源码素材
信息可视化·数据分析·html·html5