SQL进阶day11——窗口函数

目录

1专用窗口函数

[1.1 每类试卷得分前3名](#1.1 每类试卷得分前3名)

1.2第二快/慢用时之差大于试卷时长一半的试卷

1.3连续两次作答试卷的最大时间窗

1.4近三个月未完成试卷数为0的用户完成情况

1.5未完成率较高的50%用户近三个月答卷情况

2聚合窗口函数

[2.1 对试卷得分做min-max归一化](#2.1 对试卷得分做min-max归一化)

2.2每份试卷每月作答数和截止当月的作答总数。

[2.3 每月及截止当月的答题情况](#2.3 每月及截止当月的答题情况)

1专用窗口函数

1.1 每类试卷得分前3名

我的代码:筛选好难,不懂啥意思

select tag tid,uid,rank()over(partition by tag order by score desc ) ranking
from examination_info ei join exam_record er
on ei.exam_id = er.exam_id
limit 3

正确代码:

select *
from (select tag tid,
uid,
rank()over(partition by tag order by max(score) desc,min(score) desc,max(uid) desc) ranking
from examination_info ei join exam_record er
on ei.exam_id = er.exam_id
group by tag,uid)t
where ranking<=3

复盘:

(1)排序:如果两人最大分数相同,选择最小分数大者,如果还相同,选择uid大者

ORDER BY MAX(score) desc ,MIN(score) desc,uid desc

(2)窗口函数

【排序窗口函数】

● rank()over()------1,1,3,4

● dense_rank()over()------1,1,2,3

● row_number()over()------1,2,3,4

1.2第二快/慢用时之差大于试卷时长一半的试卷

我的代码:没搞出来,好久没有弄窗口了,这个题好难

方法1:max(if)

select a.exam_id,b.duration,b.release_time  
from
(select exam_id,
row_number() over(partition by exam_id order by timestampdiff(second,start_time,submit_time) desc) rn1,
row_number() over(partition by exam_id order by timestampdiff(second,start_time,submit_time) asc ) rn2,
timestampdiff(second,start_time,submit_time) timex
from exam_record 
where score is not null) a

inner join examination_info b on a.exam_id=b.exam_id
group by a.exam_id
#if(rn1=2,a.timex,0)后最大值肯定是第二位的a.timex了
having (max(if(rn1=2,a.timex,0))-max(if(rn2=2,a.timex,0)))/60>b.duration/2 
order by a.exam_id desc

方法2:分析(窗口)函数:NTH_VALUE

select distinct c.exam_id,duration,release_time from 
(select a.exam_id, 
nth_value(TIMESTAMPDIFF(minute,start_time,submit_time),2) over (partition by exam_id order by TIMESTAMPDIFF(minute,start_time,submit_time) desc ) as low_2,
nth_value(TIMESTAMPDIFF(minute,start_time,submit_time),2) over (partition by exam_id order by TIMESTAMPDIFF(minute,start_time,submit_time) asc) as fast_2,
duration,release_time
from exam_record a left join examination_info b on a.exam_id = b.exam_id) c 
where low_2-fast_2>duration*0.5
order by exam_id desc;

复盘:

(1)时间差函数:timestampdiff,如计算差多少分钟,timestampdiff(minute,时间1,时间2),是时间2-时间1,单位是minute

(2)如何取次最大和次最小呢:分析(窗口)函数:NTH_VALUE

NTH_VALUE (measure_expr, n) [ FROM { FIRST | LAST } ][ { RESPECT | IGNORE } NULLS ] OVER (analytic_clause)

(3)关于窗口函数,才发现我本地的数据库连接版本是5,只有MySQL8以上才能用窗口函数好像,所以不能在本地演练推导了。(我一点也不想升级,安装都很麻烦,升级的话肯定各种报错)

1.3连续两次作答试卷的最大时间窗

我的思路:(写不出来)

(1)先把每个用户作答时间用dateformat求出来

(2)在作差,应该可以用偏移分析函数:

【偏移分析函数】

● lag(字段名,偏移量[,默认值])over()------当前行向上取值"偏移量"行

● lead(字段名,偏移量[,默认值])over()------当前行向下取值"偏移量"行

例:

● ,confirmed 当天截至时间累计确诊人数

● ,lag(confirmed,1)over(partition by name order by whn) 昨天截至时间累计确诊人数

● ,(confirmed - lag(confirmed,1)over(partition by name order by whn)) 每天新增确诊人数

(3)然后选取最大的这个差值

正确代码:

select 
    uid,
    max(datediff(next_time,start_time))+1 as days_window,
    round(count(start_time)/(datediff(max(start_time),min(start_time))+1)*(max(datediff(next_time,start_time))+1),2)as avg_exam_cnt
from(
    select 
        uid,
        start_time,
        lead(start_time,1) over(partition by uid order by start_time) as next_time
    from exam_record
    where year(start_time) = '2021'
    )a
group by uid
having count(distinct date(start_time)) > 1
order by days_window desc,avg_exam_cnt desc

复盘:

(1)先找出uid, 开始时间,下次开始时间。条件是2021创建子表

下次开始时间用偏移分析函数:

● lead(字段名,偏移量[,默认值])over()------当前行向下取值"偏移量"行

select 
    uid,
    start_time,
    lead(start_time,1) over(partition by uid order by start_time) as next_time
from exam_record
where year(start_time) = '2021'

(2)最大时间窗口 = max(datediff(next_time,start_time))+1

(3)平均做答试卷套数=作答的试卷数 / 作答期间 *最大时间窗口

= 3/7*6

= count(start_time)/

(datediff(max(start_time),min(start_time))+1)

*(max(datediff(next_time,start_time))+1)

= round(count(start_time)/

(datediff(max(start_time),min(start_time))+1)

*(max(datediff(next_time,start_time))+1),2) #保留两位小数

(4)时间作差要用时间差函数datediff,不能直接相减:结果会是不一样的

(5)datediff()函数 与 timestampdiff()函数的区别

//语法

DATEDIFF(datepart,startdate,enddate)

 SELECT DATEDIFF('2018-05-09 08:00:00','2018-05-09') AS DiffDate;
 //结果 0 ; 表示 2018-05-09 与 2018-05-09之间没有日期差。这里是不比较时分秒的。下面验证带上时分秒有没有差别。
 SELECT DATEDIFF('2018-05-09 00:00:00','2018-05-09 23:59:59') AS DiffDate;
 //结果 0 ;
 SELECT DATEDIFF('2018-05-08 23:59:59','2018-05-09 00:00:00') AS DiffDate;
 //结果 -1;
 SELECT DATEDIFF('2018-05-09 00:00:00','2018-05-08 23:59:59') AS DiffDate;
//结果 1;

1.4近三个月未完成试卷数为0的用户完成情况

我的代码:思路是这样,报错是必然的

# 先按照uid划分,找出都完成了的,
select uid,
rank()over(partition by uid order by start_time) exam_complete
from exam_record
group by uid
having count(start_time) = count(submit_time) #不对,这样不是每个uid的count

# 再按照时间划分,找出3个以上的
select uid,
count(exam_complete) exam_complete_cnt
from 
(select uid,
rank()over(partition by uid order by start_time) exam_complete
from exam_record
group by uid
having count(start_time) = count(submit_time))a
where exam_complete_cnt>3

大佬代码:发现这个答案和我的好像,我再改改

select 
    uid,
    count(start_time) as exam_complete_cnt
from
    (select 
        *,
        dense_rank() over(partition by uid order by date_format(start_time,'%Y%m') desc) as ranking
    from exam_record
    ) a
where ranking <= 3    -- 这里也不能用where ranking <= 3 and submit_time is not null,而要将用户分组后,用having判断
group by uid
having count(score) =  count(uid)
order by exam_complete_cnt desc, uid desc

我的代码改正:

select uid,
count(start_time) as exam_complete_cnt
from
(select *, #后面要用到start_time和submit_time,select也要用到uid,用*全部返回吧
dense_rank()over(partition by uid order by date_format(start_time,"%Y%m") desc) ranking
from exam_record)a
where ranking <=3 #把前面3个月的都要进行计数
group by uid
having count(start_time) = count(submit_time)
order by exam_complete_cnt desc, uid desc

复盘:

(1)这里不能用rank,加引号也不行,难道是和函数名重复了?改为ranking就好了

(2)窗口函数,等着二刷吧,有点小难

1.5未完成率较高的50%用户近三个月答卷情况

我的代码:思路是这样,报错是必然的

# 先筛选出SQL试卷上,未完成率较高的50%用户,6级和7级用户
select *,count(er.submit_time)/count(er.start_time) complete_rate,
rank()over(partition by u.uid order by complete_rate) ranking
from examination_info ei join exam_record er
on ei.exam_id = er.exam_id
join user_info u on u.uid = er.uid
group by u.uid
having ei.tag = 'SQL' and u.level in (6,7) and ranking<0.5
# 子表用户在有试卷作答记录的近三个月中,每个月的答卷数目和完成数目
# 完整代码:
select
uid,
start_month,
count(start_time) total_cnt,
count(submit_time) complete_cnt
from(select *,count(er.submit_time)/count(er.start_time) complete_rate,
rank()over(partition by u.uid order by complete_rate) ranking,
dense_rank()over(partition by uid order by date_format(submit_time,"%Y%m") desc) rankingmonth
from examination_info ei join exam_record er
on ei.exam_id = er.exam_id
join user_info u on u.uid = er.uid
group by u.uid
having ei.tag = 'SQL' and u.level in (6,7) and ranking<0.5)a
where rankingmonth <=3
group by date_format(submit_time,"%Y%m")

大佬代码:好牛,我啥时候能这个水平

# 第一步,先找出未完成率前50%高的用户ID,注意这里需要的sql试卷
with rote_tab as 
(select t.uid,t.f_rote,row_number()over(order by t.f_rote desc,uid) as rank2
,count(t.uid)over(partition by t.tag)as cnt
from (select er.uid,ef.tag,(sum(if(submit_time is null,1,0))/count(start_time)) as f_rote
from exam_record er left join examination_info ef 
on ef.exam_id=er.exam_id 
where tag='SQL' 
group by uid ) t)

select  #第四步,分用户和月份进行数据统计;同时需要注意,统计的试卷数是所有类型的,不是之前仅有SQL类型
    uid
    ,start_month
    ,count(start_time) as total_cnt
    ,count(submit_time) as complete_cnt
from 
(
select # 第三步,利用窗口函数对每个用户的月份进行降序排序,以便找出最近的三个月;
    uid
    ,start_time
    ,submit_time
    ,date_format(start_time,'%Y%m') as start_month
    ,dense_rank()over(partition by uid order by date_format(start_time,'%Y%m') desc) as rank3
from exam_record 
where uid in 
    (select distinct er.uid
    from exam_record er left join user_info uf on uf.uid=er.uid
    where er.uid in 
    (select uid from rote_tab #引用公用表 rote_tab
    where rank2<=round(cnt/2,0))
    and uf.level in (6,7))  # 第二步,进一步找出满足等级为6或7的用户ID
) t2
where rank3<=3
group by uid,start_month
order by uid,start_month

2聚合窗口函数

2.1 对试卷得分做min-max归一化

我的报错代码:(得分区间默认为[0,100],如果某个试卷作答记录中只有一个得分,那么无需使用公式,归一化并缩放后分数仍为原分数)这个怎么筛选出去呀

select er.uid,er.exam_id,
(score-min(score))/(max(score)-min(score)) avg_new_score
from examination_info ei join exam_record er
using(exam_id)
where difficulty = 'hard'
group by er.uid,er.exam_id
order by er.uid desc,avg_new_score desc

大佬代码:

# 第一步先求出高难度试卷的最值max_min_tab
with max_min_tab as 
(select  er.uid,er.exam_id,er.score
    ,max(er.score)over(partition by er.exam_id) as max_score
    ,min(er.score)over(partition by er.exam_id) as min_score
from exam_record er 
left join examination_info ef on er.exam_id=ef.exam_id
where score is not null and difficulty='hard')

select uid,exam_id, #第三步进行取平均值和排序
round(avg(new_score)) as avg_new_score
from 
(select uid,exam_id
,if(max_score!=min_score,(score-min_score)/(max_score-min_score)*100,score) as new_score
from max_min_tab) t  # 第二步在max_min_tab中进行归一化计算,并用if排除只有一个分数的
group by exam_id,uid
order by exam_id,avg_new_score desc

复盘:

(1)最值窗口函数:不是直接max,min再后面分组

max(er.score)over(partition by er.exam_id) as max_score,

min(er.score)over(partition by er.exam_id) as min_score

(2)用if来排除只有一个分数的情况

if(max_score!=min_score,(score-min_score)/(max_score-min_score)*100,score

2.2每份试卷每月作答数和截止当月的作答总数。

我的代码:

select exam_id,
date_format(submit_time,"%Y%m") start_month,
count(submit_time)over(partition by exam_id) month_cnt,
count(submit_time)over(partition by exam_id) cum_exam_cnt #应该要用偏移分析函数
from exam_record

大佬代码:

select distinct exam_id,
date_format(start_time,'%Y%m') start_month,
count(start_time)over(partition by exam_id,date_format(start_time,"%Y%m")) month_cnt,
count(start_time)over(partition by exam_id order by date_format(start_time,'%Y%m')) cum_exam_cnt 
from exam_record
order by exam_id,start_month

复盘:

(1)要distinct exam_id,如果不去重 exam_id,那么同 exam_id和同月会被输出原文件中exam_id和同月配套出现那么多次。

如:

又如:

(2)是start_time而不是submit_time,start_time有记录才表明有作答

2.3 每月及截止当月的答题情况

我的代码:后面三个没有整出来

select 
distinct date_format(start_time,'%Y%m') start_month,
count(uid)over(partition by date_format(start_time,'%Y%m')) mau,
# if(count>0,count,0) month_add_uv,
# max(month_add_uv)over(partition by date_format(start_time,'%Y%m')) max_month_add_uv,
# max(mau)over() cum_sum_uv
from exam_record
group by uid,start_month
order by start_month

大佬代码:

select 
  start_month
, count(distinct uid) as mau
, count(if(rn=1, uid, null)) as month_add_uv
, max(count(if(rn=1, uid, null))) over(order by start_month) as max_month_add_uv
, sum(count(if(rn=1, uid, null))) over(order by start_month) as cum_sum_uv
from (
    select
      uid, date_format(start_time, '%Y%m') as start_month
    , row_number() over(partition by uid order by start_time) as rn
    from exam_record
) t
group by start_month
;

复盘:

(1)【排序窗口函数】

● rank()over()------1,1,3,4

● dense_rank()over()------1,1,2,3

● row_number()over()------1,2,3,4

这里使用 row_number()over()就只有一个1,那么如果uid有排名为1的,就表示是这个月的新用户。

(2)

  • SQL查询语句语法结构和运行顺序
    • 运行顺序:from--where--group by--having--order by--limit--select
    • 语法结构:select--from--where--group by--having--order by--limit
相关推荐
十叶知秋1 分钟前
【jmeter】jmeter的线程组功能的详细介绍
数据库·jmeter·性能测试
菜鸟的人工智能之路25 分钟前
桑基图在医学数据分析中的更复杂应用示例
python·数据分析·健康医疗
瓜牛_gn2 小时前
mysql特性
数据库·mysql
奶糖趣多多3 小时前
Redis知识点
数据库·redis·缓存
CoderIsArt4 小时前
Redis的三种模式:主从模式,哨兵与集群模式
数据库·redis·缓存
师太,答应老衲吧6 小时前
SQL实战训练之,力扣:2020. 无流量的帐户数(递归)
数据库·sql·leetcode
Yaml47 小时前
Spring Boot 与 Vue 共筑二手书籍交易卓越平台
java·spring boot·后端·mysql·spring·vue·二手书籍
阡之尘埃7 小时前
Python数据分析案例61——信贷风控评分卡模型(A卡)(scorecardpy 全面解析)
人工智能·python·机器学习·数据分析·智能风控·信贷风控
Channing Lewis7 小时前
salesforce case可以新建一个roll up 字段,统计出这个case下的email数量吗
数据库·salesforce
追风林7 小时前
mac 本地docker-mysql主从复制部署
mysql·macos·docker