HO-3D 数据集

// 由于非刚体的追踪比较困难,所以看看刚体数据集

bash 复制代码
HOnnotate: A method for 3D Annotation of Hand and Object Poses  // cvpr20

https://arxiv.org/abs/1907.01481       
https://github.com/shreyashampali/ho3d
https://paperswithcode.com/paper/ho-3d-a-multi-user-multi-object-dataset-for
https://paperswithcode.com/dataset/ho-3d

dataset

手与物体交互数据集,具有手部和物体的 3D 姿态注释。该数据集包含来自68个序列的66,034张训练图像和11,524张测试图像。这些序列是在多相机和单相机设置中捕获的,并包含 10 个不同的主题,操纵 YCB 数据集中的 10 个不同对象。使用优化算法自动获取注释。测试集的手部姿势注释被保留,测试集上算法的准确性可以使用标准指标使用 CodaLab 挑战提交(参见项目页面)进行评估。测试集和训练集的对象姿态注释与数据集一起提供。

abs

这篇文章介绍了一种名为HOnnotate的方法,用于标注手部和物体姿势的3D图像。该方法解决了在标注手部操纵物体的图像时所面临的相互遮挡的挑战。作者创建了一个名为HO-3D的数据集,这是第一个具有手部和物体3D标注的彩色图像的无标记数据集。通过HO-3D数据集,作者开发了一种基于单个RGB图像的方法,用于推广到训练中未见过的物体。该方法在处理手部和物体之间的相互遮挡方面取得了显著进展,为计算机视觉和姿势估计领域带来了重要意义。

早期的方法通常依赖于多视角摄像机设置和逐帧跟踪方法,可能需要仔细的初始化并且会随时间漂移。一些方法提出了生成方法来跟踪手部与物体的接触点,以进行手持RGB-D物体形状扫描。还有一些方法利用视觉传感器估计手部与物体相互作用期间的接触力,并进而估计手部和物体的姿势。此外,还有一些方法利用物理模拟器和3D渲染器进行帧间跟踪,或者使用协作跟踪器进行多物体和多手部跟踪。这些方法在处理手部和物体姿势估计方面取得了定性较高的准确性,但由于真实世界中的地面真实获取很困难,因此它们通常在合成数据集上评估。

method

HOnnotate方法,用于手部和物体的3D姿势标注。该方法通过在RGB图像上标注手部和物体的关键点来创建HO-3D数据集,其中包含了手部和物体的3D姿势标注。作者介绍了他们的标注方法,并说明了如何利用这些标注数据来训练用于手部姿势估计的深度学习模型。通过HO-3D数据集和HOnnotate方法,作者展示了他们的方法在处理手部和物体姿势估计问题上的有效性和重要性。

benchmark

  • average hand-joint errors (in cm)
  • average mesh error in cm
相关推荐
前端Hardy13 小时前
HTML&CSS:MacBook Air 3D 动画跃然屏上
前端·javascript·css·3d·html
前端Hardy18 小时前
HTML&CSS:翻书加载效果
前端·javascript·css·3d·html·css3
卧式纯绿1 天前
自动驾驶3D目标检测综述(四)
人工智能·神经网络·目标检测·3d·目标跟踪·cnn·自动驾驶
CASAIM1 天前
CASAIM与新疆大学达成全自动化光学测量技术合作,加速推进智能制造现代产业学院建设
3d
敲代码不忘补水1 天前
Python Matplotlib 经典 3D 绘图类型:从二维到三维的可视化解析
开发语言·python·3d·数据分析·numpy·pandas·matplotlib
小彭努力中2 天前
141. Sprite标签(Canvas作为贴图)
前端·深度学习·3d·webgl·three.js
Tianwen_Burning2 天前
halcon3D 1:1切片轮廓投影技术,透过像素距离,知实际物体的尺寸
算法·3d
Struart_R2 天前
Edify 3D: Scalable High-Quality 3D Asset Generation 论文解读
人工智能·深度学习·3d·扩散模型·三维生成·三维资产
mirrornan2 天前
3D可视化产品定制,打造“所见即所得”的购物体验!
3d·3d模型·三维建模·3d可视化定制
卧式纯绿2 天前
自动驾驶3D目标检测综述(三)
人工智能·python·深度学习·目标检测·3d·cnn·自动驾驶