【文献阅读】LORA: LOW-RANK ADAPTATION OF LARGE LANGUAGE MODELS

目录

  • [1. motivation](#1. motivation)
  • [2. overall](#2. overall)
  • [3. model](#3. model)
    • [3.1 low rank parametrized update matrices](#3.1 low rank parametrized update matrices)
    • [3.2 applying lora to transformer](#3.2 applying lora to transformer)
  • [4. limitation](#4. limitation)
  • [5. experiment](#5. experiment)
  • [6. 代码](#6. 代码)
  • [7. 补充](#7. 补充)
  • 参考文献

1. motivation

  • 常规的adaptation需要的微调成本过大
  • 现有方法的不足:
    • Adapter Layers Introduce Inference Latency
    • Directly Optimizing the Prompt is Hard

2. overall

  • inspiration
    Aghajanyan[1] 证明了预训练语言模型有一个低的"intrinsic rank",并且将其映射到一个子空间后仍然可以有效率的学习
  • hypothesis
    假设模型自适应过程中,权重的改变也具有一个低的"intrinsic rank"
  • core idea
    通过优化全连接层改变量的秩分解矩阵去微调全连接层

3. model

3.1 low rank parametrized update matrices

采用秩分解矩阵代表权重的改变量:

则对于任意的输出:

A ∈ R d × r , B ∈ R r × d , r < < d {A\in R^{d \times r}}, {B \in R^{r \times d}}, r<<d A∈Rd×r,B∈Rr×d,r<<d

对于A采用一个随机的高斯初始化,对于B采用0初始化。

采用 α / r {\alpha/r} α/r缩放 δ W x {\delta Wx} δWx,r是矩阵的秩, α {\alpha} α是一个常数。这个缩放可以减小当r改变时,我们重新微调参数的需要
A generalization of full fine-tune

adapter-based的方法通常是利用一个MLP或者一个prefix-based方法,导致模型不允许长序列的输入。不同于adapter-based的方法,LORA是针对原始模型训练的。LORA微调时,我们可以通过设置r来达到恢复全量微调的效果。因为LORA在适应过程中不要求对权重矩阵的累积梯度更新具有完整的秩。

no additional inference latency

部署到实际生产时,可以先计算存储 W = W 0 + B A {W = W_0 + BA} W=W0+BA。对于不同的下游任务,只用计算BA和其变化量的差值就可以了。

3.2 applying lora to transformer

  • transformer的框架中,有四个权重矩阵在自注意力层( W q , W k , W v , W o {W_q,W_k, W_v, W_o} Wq,Wk,Wv,Wo),两个在MLP。
  • lora微调时只针对四个自注意力层的矩阵,冻结MLP的两个矩阵(即下游任务不训练)。

4. limitation

For example, it is not straightforward to batch inputs to different tasks with different A and B in a single forward pass, if one chooses to absorb A and B into W to eliminate additional inference latency. Though it is possible to not merge the weights and dynamically choose the LoRA modules to use for samples in a batch for scenarios where latency is not critical.

5. experiment



6. 代码

  • lora层
  • 普通的前馈网络
  • 加入lora后

7. 补充

OLoRA是lora的一个变种,是在lora的基础上引入了量化,减小了对资源量的需求。
创新点:4 位量化、4 位 NormalFloat 数据类型、双量化和分页优化器

参考文献

1\] Armen Aghajanyan, Luke Zettlemoyer, and Sonal Gupta. Intrinsic Dimensionality Explains the Effectiveness of Language Model Fine-Tuning. arXiv:2012.13255 \[cs\], December 2020. URL http://arxiv.org/abs/2012.13255. \[2\][大模型微调原理与代码实战案例(四):LoRA](https://blog.csdn.net/2301_78285120/article/details/132701965)

相关推荐
jackylzh几秒前
PyCharm中测试、训练YOLO方法
人工智能·yolo·计算机视觉
说私域6 分钟前
开源活动报名AI智能客服AI智能名片预约服务小程序在精神服务中的应用场景研究
人工智能·小程序
vibag8 分钟前
Prompt提示词工程
python·语言模型·大模型·prompt
sandwu16 分钟前
AI自动化测试(二)—— Playwright-MCP搭建自动化UI测试(browser-use&midscene对比)
人工智能·ui·自动化·playwright
DeepVis Research23 分钟前
【Autonomous Driving/Sim】2026年度自动驾驶极端场景与车辆动力学仿真基准索引 (Benchmark Index)
人工智能·物联网·机器学习·自动驾驶·数据集
xixixi7777739 分钟前
SoC芯片本质——“系统级集成”
人工智能·机器学习·架构·pc·soc·集成·芯片
lisw0543 分钟前
工程软件化概述!
人工智能·科技·机器学习
咕咚-萌西1 小时前
Agent和workflow
人工智能
大模型RAG和Agent技术实践1 小时前
SQL Agent从“黑盒“到“全透明“:基于LangGraph+Phoenix的可观测性实战指南
数据库·人工智能·sql·agent·langgraph
GEO AI搜索优化助手1 小时前
边界、伦理与未来形态——GEO革命的深远影响与终极思考
人工智能·搜索引擎·生成式引擎优化·ai优化·geo搜索优化