【文献阅读】LORA: LOW-RANK ADAPTATION OF LARGE LANGUAGE MODELS

目录

  • [1. motivation](#1. motivation)
  • [2. overall](#2. overall)
  • [3. model](#3. model)
    • [3.1 low rank parametrized update matrices](#3.1 low rank parametrized update matrices)
    • [3.2 applying lora to transformer](#3.2 applying lora to transformer)
  • [4. limitation](#4. limitation)
  • [5. experiment](#5. experiment)
  • [6. 代码](#6. 代码)
  • [7. 补充](#7. 补充)
  • 参考文献

1. motivation

  • 常规的adaptation需要的微调成本过大
  • 现有方法的不足:
    • Adapter Layers Introduce Inference Latency
    • Directly Optimizing the Prompt is Hard

2. overall

  • inspiration
    Aghajanyan[1] 证明了预训练语言模型有一个低的"intrinsic rank",并且将其映射到一个子空间后仍然可以有效率的学习
  • hypothesis
    假设模型自适应过程中,权重的改变也具有一个低的"intrinsic rank"
  • core idea
    通过优化全连接层改变量的秩分解矩阵去微调全连接层

3. model

3.1 low rank parametrized update matrices

采用秩分解矩阵代表权重的改变量:

则对于任意的输出:

A ∈ R d × r , B ∈ R r × d , r < < d {A\in R^{d \times r}}, {B \in R^{r \times d}}, r<<d A∈Rd×r,B∈Rr×d,r<<d

对于A采用一个随机的高斯初始化,对于B采用0初始化。

采用 α / r {\alpha/r} α/r缩放 δ W x {\delta Wx} δWx,r是矩阵的秩, α {\alpha} α是一个常数。这个缩放可以减小当r改变时,我们重新微调参数的需要
A generalization of full fine-tune

adapter-based的方法通常是利用一个MLP或者一个prefix-based方法,导致模型不允许长序列的输入。不同于adapter-based的方法,LORA是针对原始模型训练的。LORA微调时,我们可以通过设置r来达到恢复全量微调的效果。因为LORA在适应过程中不要求对权重矩阵的累积梯度更新具有完整的秩。

no additional inference latency

部署到实际生产时,可以先计算存储 W = W 0 + B A {W = W_0 + BA} W=W0+BA。对于不同的下游任务,只用计算BA和其变化量的差值就可以了。

3.2 applying lora to transformer

  • transformer的框架中,有四个权重矩阵在自注意力层( W q , W k , W v , W o {W_q,W_k, W_v, W_o} Wq,Wk,Wv,Wo),两个在MLP。
  • lora微调时只针对四个自注意力层的矩阵,冻结MLP的两个矩阵(即下游任务不训练)。

4. limitation

For example, it is not straightforward to batch inputs to different tasks with different A and B in a single forward pass, if one chooses to absorb A and B into W to eliminate additional inference latency. Though it is possible to not merge the weights and dynamically choose the LoRA modules to use for samples in a batch for scenarios where latency is not critical.

5. experiment



6. 代码

  • lora层
  • 普通的前馈网络
  • 加入lora后

7. 补充

OLoRA是lora的一个变种,是在lora的基础上引入了量化,减小了对资源量的需求。
创新点:4 位量化、4 位 NormalFloat 数据类型、双量化和分页优化器

参考文献

1\] Armen Aghajanyan, Luke Zettlemoyer, and Sonal Gupta. Intrinsic Dimensionality Explains the Effectiveness of Language Model Fine-Tuning. arXiv:2012.13255 \[cs\], December 2020. URL http://arxiv.org/abs/2012.13255. \[2\][大模型微调原理与代码实战案例(四):LoRA](https://blog.csdn.net/2301_78285120/article/details/132701965)

相关推荐
Blossom.118几秒前
用一颗MCU跑通7B大模型:RISC-V+SRAM极致量化实战
人工智能·python·单片机·嵌入式硬件·opencv·机器学习·risc-v
mit6.8244 分钟前
[GazeTracking] 摄像头交互与显示 | OpenCV
人工智能·opencv·交互
Brianna Home33 分钟前
从“码农”到“导演”:AI结对编程如何重塑软件工程范式
大数据·人工智能·深度学习·自然语言处理·chatgpt
oe101934 分钟前
实测Triton-Copilot:AI如何助力高性能算子开发
人工智能·pytorch·copilot·vibecoding·flagos
IT_陈寒39 分钟前
JavaScript性能优化:3个被低估的V8引擎技巧让你的代码提速50%
前端·人工智能·后端
hazy1k1 小时前
K230基础-录放音频
人工智能·stm32·单片机·嵌入式硬件·音视频·k230
众趣科技2 小时前
数字孪生重构智慧园区:众趣科技何以成为 VR 园区领域标杆
人工智能·3d·智慧城市·空间计算
心勤则明3 小时前
Spring AI 会话记忆实战:从内存存储到 MySQL + Redis 双层缓存架构
人工智能·spring·缓存
ARM+FPGA+AI工业主板定制专家5 小时前
基于GPS/PTP/gPTP的自动驾驶数据同步授时方案
人工智能·机器学习·自动驾驶
长鸳词羡5 小时前
wordpiece、unigram、sentencepiece基本原理
人工智能