win setup kafka 3.6.2 Step-by-Step Guide

At the end of the document, some bugs are recorded

setup

from https://kafka.apache.org/downloads download .tgz binary package to local and extract

Prerequisites

  1. Kafka Installed: Ensure Kafka is installed and running.
  2. Java Installed: Kafka requires Java. Make sure having the JDK installed.

edit config file

  • edit config/server.properties file:

    broker.id=0

    log.dirs=/tmp/kafka-logs # or in window use D:\\tmp\\kafka-logs

    zookeeper.connect=localhost:2181

    listeners=PLAINTEXT://:9092

  • edit config/zookeeper.properties file:

    dataDir=/bigdata/zk # in win use D:\\bigdata\\zk

1. Start Kafka Server

Make sure Zookeeper and Kafka server are running.

Start Zookeeper:
.\bin\windows\zookeeper-server-start.bat .\config\zookeeper.properties
Start Kafka server:
.\bin\windows\kafka-server-start.bat .\config\server.properties

2. Create a Kafka Topic

Before producing and consuming messages, need a topic.

.\bin\windows\kafka-topics.bat --create --topic test --bootstrap-server localhost:9092 --partitions 1 --replication-factor 1

3. Set Up Kafka Producer

use the Kafka console producer to send messages to the topic.

Open a new Command Prompt and run:

.\bin\windows\kafka-console-producer.bat --topic test --bootstrap-server localhost:9092

Type messages in the console to send them to the Kafka topic.

4. Set Up Kafka Consumer

Open another Command Prompt to start the consumer that reads messages from the topic.

.\bin\windows\kafka-console-consumer.bat --topic test --bootstrap-server localhost:9092 --from-beginning

should see messages in the consumer console as type them in the producer console.

Connecting Kafka with Code

Here are examples in Java and Python.

Java Example

First, add Kafka client dependencies topom.xml if using Maven:

<dependency>
    <groupId>org.apache.kafka</groupId>
    <artifactId>kafka-clients</artifactId>
    <version>3.6.2</version>
</dependency>

Producer Example

import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerRecord;

import java.util.Properties;

public class KafkaProducerExample {
    public static void main(String[] args) {
        Properties props = new Properties();
        props.put("bootstrap.servers", "localhost:9092");
        props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");

        KafkaProducer<String, String> producer = new KafkaProducer<>(props);
        producer.send(new ProducerRecord<>("test", "key", "value"));
        producer.close();
    }
}

Consumer Example

import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;

import java.time.Duration;
import java.util.Collections;
import java.util.Properties;

public class KafkaConsumerExample {
    public static void main(String[] args) {
        Properties props = new Properties();
        props.put("bootstrap.servers", "localhost:9092");
        props.put("group.id", "test-group");
        props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
        props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");

        KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);
        consumer.subscribe(Collections.singletonList("test"));

        while (true) {
            ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(100));
            records.forEach(record -> {
                System.out.printf("offset = %d, key = %s, value = %s%n", record.offset(), record.key(), record.value());
            });
        }
    }
}
Python Example

First, install the Kafka Python client:

pip install kafka-python

Producer Example

from kafka import KafkaProducer

producer = KafkaProducer(bootstrap_servers='localhost:9092')
producer.send('test', b'Hello, Kafka!')
producer.close()

Consumer Example

from kafka import KafkaConsumer

consumer = KafkaConsumer('test', bootstrap_servers='localhost:9092', auto_offset_reset='earliest')
for message in consumer:
    print(f"Key: {message.key}, Value: {message.value}")

Note

  • Start Zookeeper and Kafka server: Ensure they are running correctly.
  • Create topics: Use Kafka commands to create the required topics.

some bug

'wmic' is not recognized as an internal or external command, operable program or batch file

click Environment Variables. In the section for system variables, find PATH (or any capitalization thereof). Add this entry to it:

%SystemRoot%\System32\Wbem

ERROR Exiting Kafka due to fatal exception during startup. (kafka.Kafka$) java.nio.file.InvalidPathException: Illegal char < > at index 2: D: mpdownloadkafkakafka_2.13-3.6.2log\meta.properties.tmp

Correct the Path Format:

Ensure that the path specified in configuration does not contain illegal characters or spaces. Paths in Windows should use double backslashes \ or a single forward slash /.

WARN [SocketServer listenerType=ZK_BROKER, nodeId=0] Unexpected error from /0:0:0:0:0:0:0:1 (channelId=0:0:0:0:0:0:0:1:9092-0:0:0:0:0:0:0:1:62710-1); closing connection (org.apache.kafka.common.network.Selector) org.apache.kafka.common.network.InvalidReceiveException: Invalid receive (size = 1195725856 larger than 104857600)

  • Edit server.properties:

    Open the server.properties file in Kafka config directory and increase the max.request.size property. Add or modify the following lines:

    max.request.size=209715200 # Increase this value as needed, default is 104857600 (100MB)

    socket.request.max.bytes=209715200 # Ensure this matches or exceeds max.request.size

  • Edit consumer.properties and producer.properties (if applicable):

    If have consumer and producer configurations, ensure that these properties are set appropriately there as well:

    max.request.size=209715200

相关推荐
Data跳动4 小时前
Spark内存都消耗在哪里了?
大数据·分布式·spark
Java程序之猿6 小时前
微服务分布式(一、项目初始化)
分布式·微服务·架构
来一杯龙舌兰6 小时前
【RabbitMQ】RabbitMQ保证消息不丢失的N种策略的思想总结
分布式·rabbitmq·ruby·持久化·ack·消息确认
节点。csn8 小时前
Hadoop yarn安装
大数据·hadoop·分布式
saynaihe9 小时前
安全地使用 Docker 和 Systemctl 部署 Kafka 的综合指南
运维·安全·docker·容器·kafka
NiNg_1_2349 小时前
基于Hadoop的数据清洗
大数据·hadoop·分布式
隔着天花板看星星11 小时前
Spark-Streaming集成Kafka
大数据·分布式·中间件·spark·kafka
技术路上的苦行僧15 小时前
分布式专题(8)之MongoDB存储原理&多文档事务详解
数据库·分布式·mongodb
龙哥·三年风水15 小时前
workman服务端开发模式-应用开发-后端api推送修改二
分布式·gateway·php
小小工匠16 小时前
分布式协同 - 分布式事务_2PC & 3PC解决方案
分布式·分布式事务·2pc·3pc