win setup kafka 3.6.2 Step-by-Step Guide

At the end of the document, some bugs are recorded

setup

from https://kafka.apache.org/downloads download .tgz binary package to local and extract

Prerequisites

  1. Kafka Installed: Ensure Kafka is installed and running.
  2. Java Installed: Kafka requires Java. Make sure having the JDK installed.

edit config file

  • edit config/server.properties file:

    broker.id=0

    log.dirs=/tmp/kafka-logs # or in window use D:\\tmp\\kafka-logs

    zookeeper.connect=localhost:2181

    listeners=PLAINTEXT://:9092

  • edit config/zookeeper.properties file:

    dataDir=/bigdata/zk # in win use D:\\bigdata\\zk

1. Start Kafka Server

Make sure Zookeeper and Kafka server are running.

Start Zookeeper:
复制代码
.\bin\windows\zookeeper-server-start.bat .\config\zookeeper.properties
Start Kafka server:
复制代码
.\bin\windows\kafka-server-start.bat .\config\server.properties

2. Create a Kafka Topic

Before producing and consuming messages, need a topic.

复制代码
.\bin\windows\kafka-topics.bat --create --topic test --bootstrap-server localhost:9092 --partitions 1 --replication-factor 1

3. Set Up Kafka Producer

use the Kafka console producer to send messages to the topic.

Open a new Command Prompt and run:

复制代码
.\bin\windows\kafka-console-producer.bat --topic test --bootstrap-server localhost:9092

Type messages in the console to send them to the Kafka topic.

4. Set Up Kafka Consumer

Open another Command Prompt to start the consumer that reads messages from the topic.

复制代码
.\bin\windows\kafka-console-consumer.bat --topic test --bootstrap-server localhost:9092 --from-beginning

should see messages in the consumer console as type them in the producer console.

Connecting Kafka with Code

Here are examples in Java and Python.

Java Example

First, add Kafka client dependencies topom.xml if using Maven:

复制代码
<dependency>
    <groupId>org.apache.kafka</groupId>
    <artifactId>kafka-clients</artifactId>
    <version>3.6.2</version>
</dependency>

Producer Example

复制代码
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerRecord;

import java.util.Properties;

public class KafkaProducerExample {
    public static void main(String[] args) {
        Properties props = new Properties();
        props.put("bootstrap.servers", "localhost:9092");
        props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");

        KafkaProducer<String, String> producer = new KafkaProducer<>(props);
        producer.send(new ProducerRecord<>("test", "key", "value"));
        producer.close();
    }
}

Consumer Example

复制代码
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;

import java.time.Duration;
import java.util.Collections;
import java.util.Properties;

public class KafkaConsumerExample {
    public static void main(String[] args) {
        Properties props = new Properties();
        props.put("bootstrap.servers", "localhost:9092");
        props.put("group.id", "test-group");
        props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
        props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");

        KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);
        consumer.subscribe(Collections.singletonList("test"));

        while (true) {
            ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(100));
            records.forEach(record -> {
                System.out.printf("offset = %d, key = %s, value = %s%n", record.offset(), record.key(), record.value());
            });
        }
    }
}
Python Example

First, install the Kafka Python client:

复制代码
pip install kafka-python

Producer Example

复制代码
from kafka import KafkaProducer

producer = KafkaProducer(bootstrap_servers='localhost:9092')
producer.send('test', b'Hello, Kafka!')
producer.close()

Consumer Example

复制代码
from kafka import KafkaConsumer

consumer = KafkaConsumer('test', bootstrap_servers='localhost:9092', auto_offset_reset='earliest')
for message in consumer:
    print(f"Key: {message.key}, Value: {message.value}")

Note

  • Start Zookeeper and Kafka server: Ensure they are running correctly.
  • Create topics: Use Kafka commands to create the required topics.

some bug

'wmic' is not recognized as an internal or external command, operable program or batch file

click Environment Variables. In the section for system variables, find PATH (or any capitalization thereof). Add this entry to it:

%SystemRoot%\System32\Wbem

ERROR Exiting Kafka due to fatal exception during startup. (kafka.Kafka$) java.nio.file.InvalidPathException: Illegal char < > at index 2: D: mpdownloadkafkakafka_2.13-3.6.2log\meta.properties.tmp

Correct the Path Format:

Ensure that the path specified in configuration does not contain illegal characters or spaces. Paths in Windows should use double backslashes \ or a single forward slash /.

WARN [SocketServer listenerType=ZK_BROKER, nodeId=0] Unexpected error from /0:0:0:0:0:0:0:1 (channelId=0:0:0:0:0:0:0:1:9092-0:0:0:0:0:0:0:1:62710-1); closing connection (org.apache.kafka.common.network.Selector) org.apache.kafka.common.network.InvalidReceiveException: Invalid receive (size = 1195725856 larger than 104857600)

  • Edit server.properties:

    Open the server.properties file in Kafka config directory and increase the max.request.size property. Add or modify the following lines:

    max.request.size=209715200 # Increase this value as needed, default is 104857600 (100MB)

    socket.request.max.bytes=209715200 # Ensure this matches or exceeds max.request.size

  • Edit consumer.properties and producer.properties (if applicable):

    If have consumer and producer configurations, ensure that these properties are set appropriately there as well:

    max.request.size=209715200

相关推荐
曾经的三心草3 小时前
RabbitMQ-高级特性1
分布式·rabbitmq·高级特性
玄武后端技术栈3 小时前
RabbitMQ事务机制
分布式·rabbitmq
搞不懂语言的程序员3 小时前
Kafka的核心组件有哪些?简要说明其作用。 (Producer、Consumer、Broker、Topic、Partition、ZooKeeper)
分布式·zookeeper·kafka
麻芝汤圆4 小时前
深入探索 Spark RDD 行动算子:功能解析与实战应用
大数据·hadoop·分布式·spark·mapreduce
widder_7 小时前
大数据处理利器:Hadoop 入门指南
大数据·hadoop·分布式
predisw12 小时前
kafka records deletion policy
分布式·kafka
夏天吃哈密瓜13 小时前
Spark-core-RDD入门
大数据·分布式·spark
肥宅小叽14 小时前
【shardingsphere分布式主键无效】
分布式
悻运16 小时前
如何在sheel中运行Spark
大数据·分布式·spark
悻运17 小时前
Spark处理过程-案例数据清洗
大数据·分布式·spark