基于 Transformer 的大语言模型

语言建模作为语言模型(LMs)的基本功能,涉及对单词序列的建模以及预测后续单词的分布。

近年来,研究人员发现,扩大语言模型的规模不仅增强了它们的语言建模能力,而且还产生了处理传统NLP任务之外更复杂任务的新兴能力。

这些扩大规模的语言模型被称为大型语言模型(LLMs)。

主流的LLMs基于Transformer架构设计

具体来说,一个典型的Transformer架构由多个堆叠的Transformer块组成。

通常,一个Transformer块由一个多头自注意力(MHSA)模块、一个前馈网络(FFN)和一个层归一化(LN)操作组成。

对于每个块,它接收前一个块的输出特征作为输入,并通过每个子模块传递特征以获得输出。

特别地,在第一个块之前,使用分词器将原始输入句子转换为一系列标记,随后的嵌入层用于将标记转换为输入特征。

然后,将额外的位置嵌入添加到输入特征中,以编码每个输入标记的顺序。

Transformer架构的核心概念是自注意力机制,它在MHSA模块中采用。具体来说,表示输入特征为X = [x1, x2, ..., xn],MHSA模块对它们进行线性投影并获得一组查询Q、键K和值V,如公式所示:

其中WQi、WKi和WVi分别是第i个头的投影矩阵。

然后自注意力操作应用于每组(Qi, Ki, Vi)并得到第i个头的特征Zi,如公式所示:

其中dk是查询(键)的维度。

注意,自注意力操作包含矩阵乘法操作,其计算复杂度是对输入长度的二次方。最后,MHSA模块将所有注意力头的特征连接起来,并通过线性投影形成其输出Z,如公式所示:

其中WO是投影矩阵。

可以看到,自注意力机制允许模型识别不同输入部分的重要性,无论距离如何,并且可以捕捉输入句子中的长距离依赖和复杂关系。

Transformer块中的另一个重要模块是FFN。

通常,FFN位于MHSA模块之后,由两个带有非线性激活函数的线性变换层组成。它接收MHSA模块的输出特征X,如公式所示:

其中W1和W2表示两个线性层的权重矩阵,σ(·)表示激活函数。

本文翻译自清华大学最新成果论文:《A Survey on Efficient Inference for Large Language Models 》,https://arxiv.org/pdf/2404.14294。


更多关于大语言模型的介绍,可以查看《Transformer最后一公里》专栏。

相关推荐
2501_9419820512 分钟前
结合 AI 视觉:使用 OCR 识别企业微信聊天记录中的图片信息
人工智能·ocr·企业微信
Swizard16 分钟前
别再只会算直线距离了!用“马氏距离”揪出那个伪装的数据“卧底”
python·算法·ai
事变天下27 分钟前
肾尚科技完成新一轮融资,加速慢性肾脏病(CKD)精准化管理闭环渗透
大数据·人工智能
GEO AI搜索优化助手29 分钟前
范式革命——从“关键词”到“意图理解”,搜索本质的演进与重构
人工智能·搜索引擎·生成式引擎优化·ai优化·geo搜索优化
大刘讲IT30 分钟前
2025年企业级 AI Agent 标准化落地深度年度总结:从“对话”到“端到端价值闭环”的范式重构
大数据·人工智能·程序人生·ai·重构·制造
flashlight_hi36 分钟前
LeetCode 分类刷题:199. 二叉树的右视图
javascript·算法·leetcode
LYFlied38 分钟前
【每日算法】LeetCode 46. 全排列
前端·算法·leetcode·面试·职场和发展
2301_8234380238 分钟前
【无标题】解析《采用非对称自玩实现强健多机器人群集的深度强化学习方法》
数据库·人工智能·算法
沛沛老爹39 分钟前
Web开发者快速上手AI Agent:提示词应用优化实战
人工智能·ai·agent·提示词·rag·入门知识
oscar99940 分钟前
CSP-J教程——第二阶段第十二、十三课:排序与查找算法
数据结构·算法·排序算法