什么是LangChain
LangChain是一个开源(github repo)的大语言模型应用开发框架,提供了一整套的工具、方法和接口去帮助程序员构建基于大语言模型的端到端应用。LangChain是长链(long chain)的意思,它的一个核心思想就是将应用的各阶段处理连成一条长串进行。
LangChain技术架构
官网中给出的LangChain架构图如下:
从图中不难看出,整个框架由以下几个库组成:
- langchain-core:提供基础的抽象能力和LangChain表达语言(LCEL),这一层定义了LangChain的"协议"。
- LangChain-Community:提供三方集成能力。比如一些合作伙伴的包,譬如langchain-openai / langchain-anthropic,通过LangChain-Community的接口与第三方服务进行交互。
- LangChain:这一层提供的接口形成LangChain框架的基本认知架构,比如链、代理及检索策略(retrieval strategies)。
上面3个部分都提供了Python和JavaScript两个版本。下面是提供的工具:
- Templates:用于构建和管理prompts模板,提供指令和上下文信息给到大模型。
- LangServe:将LangChain的链部署为REST API服务。
- LangSmith:一个用于debug、测试、评估和监控大模型应用的开发者平台工具。
LangChain核心学习要素
LangChain是一个大语言模型应用的开发框架,它的设计是围绕大语言模型的应用开发进行。简单说,基于大语言模型的应用在逻辑上划分为输入、模型处理、输出三个大的模块:
- 输入:包含prompt和retriever两大块内容。前者有Text、PromptTemplate、以及Example Selectors这些,后者主要是Document Loader、Text Splitter、Vector Store和Embedding等。
- 大模型:这是处理模块,包括LLM和Chat Model两大块概念。围绕它们有集成三方大模型接口、流化和缓存,以及Message类型等概念。
- 输出:大模型处理之后的输出,涉及到应用的结果展示,因此有各种数据的Parser类型。
- 组合:在上述三个实体之外,还有一些组合的概念,包括代理、链和工具,旨在扩展大模型的能力范围,提供更优的结果。
此外还有用于"粘合"模块的LCEL语言,提供了链式和并行处理机制。
LangChain版Hello World
LangChain的安装
安装LangChain库非常容易,以python版为例,只需执行如下命令:
bash
pip install langchain
上面命令包含安装了langchain-core,如果需要单独安装langchain-core,可以执行:
bash
pip install langchain-core
类似的,为了集成三方库,需要的langchain-community如下安装:
bash
pip install langchain-community
安装langserver:
bash
# 安装全部
pip install "langserve[all]"
## 仅安装client端
#pip install "langserve[client]"
## 仅安装server端
#pip install "langserve[server]"
安装langsmith:
bash
pip install langsmith
LangChain本地运行LLM
LangChain支持使用api_key调用类似OpenAI和Anthropic的三方LLM,这里为了实现的稳定性选择本地方式部署,通过Ollama封装调用本地LLM。
安装Ollama
Ollama之于LLM,就像Docker之于Image。从Ollama官网下载对应版本安装Ollama后,执行下面命令获取模型:
bash
#请结合本地硬件资源选择合适的模型
#可以参考Ollama官网介绍的模型参数规模来确定具体部署哪些模型
#https://ollama.com/library
ollama pull llama2
使用ollama list命令查看LLM是否已经拉取到本地:
LangChain的"Hello World!"
一个LangChain版本的"Hello World"代码如下:
python
from langchain_community.llms import Ollama
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
#加载llama3模型。
llm = Ollama(model="llama3")
#生成prompt模板。
prompt = ChatPromptTemplate.from_template("Hello {name}!")
#输出解析。
output_parser = StrOutputParser()
#LCEL生成链。
chain = prompt | llm | output_parser
#调用链,传入模板参数,注意传入的是字典对象。
response = chain.invoke({"name": "World"})
#打印响应结果
print(response)
上面代码输入一个简单文本,经过llm处理后,输出经过解析后最终给出模型应用的结果:
llama3大模型回应了"Hello there, Human! It's great to see you! How can I assist or chat with you today?"
恭喜你!完成了第一个用LangChain编写的大模型程序!代码里的注释简单介绍了每句的作用,现在不理解其中的语法没关系,后面我们将陆续学习其中的概念。