VScode+YOLOv8+深度相机D435i实现物体追踪

一、相关环境搭建

Anacode+YOLO识别图片-CSDN博客

二、物体追踪实现

通过导入相关的检测模型后,就可以实现物体追踪与识别。

python 复制代码
import cv2
import numpy as np
import pyrealsense2 as rs
from ultralytics import YOLO  # 将YOLOv8导入到该py文件中

# 加载官方或自定义模型
model = YOLO(r"E:\Deep learning\YOLOv8\yolov8n.pt")  # 加载一个官方的检测模型
model = YOLO(r"E:\Deep learning\YOLOv8\yolov8s.pt")  # 加载一个官方的检测模型
# model = YOLO(r"E:\Deep learning\YOLOv8\yolov8n-seg.pt")  # 加载一个官方的分割模型
# model = YOLO(r"E:\Deep learning\YOLOv8\yolov8n-pose.pt")  # 加载一个官方的姿态模型


# 深度相机配置
pipeline = rs.pipeline()  # 定义流程pipeline,创建一个管道
config = rs.config()  # 定义配置config
config.enable_stream(rs.stream.depth, 640, 480, rs.format.z16, 30)  # 初始化摄像头深度流
config.enable_stream(rs.stream.color, 640, 480, rs.format.bgr8, 30)
pipe_profile = pipeline.start(config)  # 启用管段流
align = rs.align(rs.stream.color)  # 这个函数用于将深度图像与彩色图像对齐

def get_aligned_images():  # 定义一个获取图像帧的函数,返回深度和彩色数组
    frames = pipeline.wait_for_frames()  # 等待获取图像帧
    depth_frame = frames.get_depth_frame()  # 获取深度帧
    color_frame = frames.get_color_frame()  # 获取对齐帧中的的color帧
    depth_image = np.asanyarray(depth_frame.get_data())  # 将深度帧转换为NumPy数组
    color_image = np.asanyarray(color_frame.get_data())  # 将彩色帧转化为numpy数组
    return depth_image, color_image

if __name__ == '__main__':
    try:
        while True:
            img_depth, img_color = get_aligned_images()  # 获取深度帧和彩色帧
            # cv2.applyColorMap()将深度图像转化为彩色图像,以便更好的可视化分析
            depth_colormap = cv2.applyColorMap(
                cv2.convertScaleAbs(img_depth, alpha=0.07), cv2.COLORMAP_JET)
            source = [img_color]
            # 轨迹追踪,persist=true表示数据储存
            results = model.track(source, persist=True)
            img_color = results[0].plot()  # 在图像上添加色彩帧(追踪结果)
            # 将图像color_impage和depth_colormap水平堆叠
            # images = np.hstack((img_color, depth_colormap))
            # 设置窗口,窗口大小根据图像自动调整
            cv2.namedWindow('RealSense', cv2.WINDOW_AUTOSIZE)
            # 将图像images显示在窗口中,这个显示的是带有追踪结果的图像
            cv2.imshow('RealSense', img_color)
            key = cv2.waitKey(1)  # 等待用户输入
            # Press esc or 'q' to close the image window
            if key & 0xFF == ord('q') or key == 27:
                cv2.destroyAllWindows()
                pipeline.stop()
                break
    finally:
        # Stop streaming
        pipeline.stop()

相关识别效果如下视频:

这里当人或者物体移动的时候,相应的识别框和标识也会跟着动。此外,如果采用了-Pose还可以识别人的姿态。

D435i相机+VScode+YOLOv8视频识别追踪

相关推荐
困死,根本不会1 分钟前
OpenCV摄像头实时处理:基于模板匹配的摄像头实时数字识别
python·opencv·计算机视觉
光羽隹衡5 分钟前
计算机视觉——Opencv(直方图均衡化)
人工智能·opencv·计算机视觉
qwy7152292581635 分钟前
12-图像的仿射(平移、旋转)
人工智能·opencv·计算机视觉
晚霞的不甘9 分钟前
Flutter for OpenHarmony实现高性能流体粒子模拟:从物理引擎到交互式可视化
前端·数据库·经验分享·flutter·microsoft·计算机视觉
ZPC821015 分钟前
机器人手眼标定
人工智能·python·数码相机·算法·机器人
爱打代码的小林17 分钟前
基于 OpenCV+Dlib 的实时人脸分析系统:年龄性别检测 + 疲劳监测 + 表情识别
人工智能·opencv·计算机视觉
格林威27 分钟前
Baumer相机碳纤维布纹方向识别:用于复合材料铺层校验的 5 个核心技巧,附 OpenCV+Halcon 实战代码!
人工智能·数码相机·opencv·算法·计算机视觉·视觉检测
ZCXZ12385296a32 分钟前
YOLOv11-C3k2-wConv改进脐橙目标检测与分级模型研究
人工智能·yolo·目标检测
格林威1 小时前
Baumer相机视野内微小缺陷增强检测:提升亚像素级瑕疵可见性的 7 个核心方法,附 OpenCV+Halcon 实战代码!
人工智能·数码相机·opencv·算法·计算机视觉·视觉检测·工业相机
Ryan老房11 小时前
未来已来-AI标注工具的下一个10年
人工智能·yolo·目标检测·ai