Spark参数配置不合理的情况

1.1 内存设置 💾

常见的内存设置有两类:堆内和堆外 💡

我们作业中大量的设置 driver 和 executor 的堆外内存为 4g,造成资源浪费 📉。

通常 executor 堆外内存在 executor.cores=1 的时候,1g 足够了,正常来说最大值不超过 2g;driver 1g-2g 足够了 ✅。

注意:如果有 c++ 库这种计算,executor 堆外内存可以保持原有配置。 📚

各版本推荐配置的 key 以及配置值 各版本不推荐配置的 key 及配置值 过去无效配置,建议删除 🚫
driver 堆内 💽 --conf spark.driver.memory=6G
driver 堆外 💾 --conf spark.driver.memoryOverhead=2G --conf spark.yarn.driver.memoryOverhead=4g --conf spark.yarn.driver.direct*
executor 堆内 💽 --conf spark.executor.memory=3G
executor 堆外 💾 --conf spark.executor.memoryOverhead=1G --conf spark.yarn.executor.memoryOverhead=4g --conf spark.yarn.executor.direct*
1.2 动态资源调度相关参数 📊

不开启动态资源管理或者参数设置不合理,会导致明显的资源浪费 💸:

涉及到动态资源调度的参数主要有以下几个 📝:

参数名 🛠️ 默认值 ⚙️ 作用 🧐 错误使用案例 🚫 使用建议 🌟
spark.dynamicAllocation.enabled ✅ false 开启资源动态能力,在 executor 空闲时可以释放,需要资源是发起请求 不开启 开启资源动态功能,尤其是运行时间比较长或者有数据倾斜的情况 🌟
spark.dynamicAllocation.executorIdleTimeout ⏲️ 60s executor 空闲多久开始释放资源 30000 或者 1200s 过大的数值 🚫 60s-120s 🌟
spark.dynamicAllocation.minExecutors 📉 0 最小持有的 executor 数,到达该值,空闲也不会释放 200 🚫 推荐设置为 1-5 🌟
spark.dynamicAllocation.maxExecutors 📈 infinity 作业申请 executor 资源的最大值 1000 以上 🚫 通常最大值建议 256-500 即可,小作业可以更小的设置 🌟

1.3 序列化参数 📝

Spark 中序列化主要有两种,java、kryo。相对来说 kryo 序列化效率更高,作为推荐 💡:

scala 复制代码
1 spark.serializer org.apache.spark.serializer.KryoSerializer

与 kryo 相关的设置有 📊:

scala 复制代码
1 spark.kryoserializer.buffer,默认值 64k,这个不需要设置,设置值过大会常驻
2 spark.kryoserializer.buffer.max,默认值 64m

不需要设置 spark.kryoserializer.buffer,默认的 buffer 会在 64k 到 64m 动态伸缩,没有特殊需要不需要设置,如果数据比较大,设置 spark.kryoserializer.buffer.max

1.4 并行度设置 ⚙️

常见的并行度配置有两个 🔧:

  1. spark.default.parallelism 默认值:会继承上游 stage 的并行度,主要用于 rdd 的 shuffle 操作
  2. spark.sql.shuffle.partitions 默认值 200,主要用于 sql 的 shuffle 操作

算法作业绝大多数是 rdd 操作,合理设置并行度,事半功倍 💪,后面会专门介绍怎么优化自己的并行度设置 🌟

spark.default.parallelism 不建议设置的非常大。 🚫

相关推荐
一周困⁸天.2 小时前
Elasticsearch+Logstash+Filebeat+Kibana部署【7.1.1版本】
大数据·elk·elasticsearch·jenkins
档案宝档案管理2 小时前
档案宝:企业合同档案管理的“安全保险箱”与“效率加速器”
大数据·数据库·人工智能·安全·档案·档案管理
workflower3 小时前
FDD(Feature Driven Development)特征驱动开发
大数据·数据库·驱动开发·需求分析·个人开发
JH30735 小时前
《Redis 经典应用场景(一):缓存、分布式锁与限流》
redis·分布式·缓存
熙客6 小时前
Elasticsearch:分布式搜索引擎数据库
分布式·elasticsearch·搜索引擎
YangYang9YangYan7 小时前
高职新能源汽车技术专业职业发展指南
大数据·人工智能·数据分析·汽车
河南博为智能科技有限公司7 小时前
RS485转以太网串口服务器-串口设备联网的理想选择
大数据·服务器·人工智能·单片机·嵌入式硬件·物联网
Hello.Reader7 小时前
Spark RDD 编程从驱动程序到共享变量、Shuffle 与持久化
大数据·分布式·spark
VXHAruanjian8888 小时前
以智促效,释放创新力量,RPA助力企业全面自动化变革
大数据·人工智能
哦你看看9 小时前
Elasticsearch+Logstash+Filebeat+Kibana部署[7.17.3版本]
大数据·elasticsearch·搜索引擎