目录

计算各聚类中心

任务描述

本关实现一个函数来计算各簇的中心。

相关知识

在前一个关卡中,我们实现了一个函数来计算距离每个样本最近的簇中心,这样每一个样本都有了所属的簇团,从而将一堆数据分成了 n 个簇,也就是 n 个类。

K-means 算法是一个迭代优化算法,每次迭代我们需要重新计算簇的中心。一般就是通过计算每个簇类所有样本的平均值来获得。可以使用 Numpy 里面的 mean 方法np.mean(x,0)来计算均值。

编程任务

本关卡要求你实现函数 estimate_centers,在右侧编辑器 Begin-End 区间补充代码,需要填充的代码块如下:

复制代码
  1. # -*- coding: utf-8 -*-
  2. import numpy as np
  3. def estimate_centers(X, y_estimated, centers):
  4. """重新计算各聚类中心
  5. 参数:
  6. X - numpy二维数组,代表数据集的样本特征矩阵
  7. y_estimated - numpy数组,估计的各个样本的聚类中心索引
  8. n_clusters - 整数,设定的聚类个数
  9. 返回值:
  10. centers - numpy二维数组,各个样本的聚类中心
  11. """
  12. centers = np.zeros((n_clusters, X.shape[1]))
  13. # 请在此添加实现代码 #
  14. #********** Begin *********#
  15. #********** End ***********#
  16. return centers
测试说明

输入一组向量(数据集)、一个数组(每个元素分配的类中心编号)和一组向量(各聚类中心),输出一组向量(各聚类中心)。平台比对函数 estimate_centers 的输出结果与正确结果的差异,只有完全正确才能进入下一关。

代码:

python 复制代码
# -*- coding: utf-8 -*-
def estimate_centers(X, y_estimated, n_clusters):
    """重新计算各聚类中心
    参数:
        X - numpy二维数组,代表数据集的样本特征矩阵
        y_estimated - numpy数组,估计的各个样本的聚类中心索引
        n_clusters - 整数,设定的聚类个数
    返回值:
        centers - numpy二维数组,各个样本的聚类中心
    """
    import numpy as np
    centers = np.zeros((n_clusters, X.shape[1]))
    #   请在此添加实现代码     #
    #********** Begin *********#
    for i in range(n_clusters):
        centers[i] = np.mean(X[y_estimated==i], 0)
    #********** End ***********#
    return centers    
本文是转载文章,点击查看原文
如有侵权,请联系 xyy@jishuzhan.net 删除
相关推荐
IT古董5 小时前
【漫话机器学习系列】181.没有免费的午餐定理(NFL)
人工智能·机器学习
Yan-英杰8 小时前
DeepSeek-R1模型现已登录亚马逊云科技
java·大数据·人工智能·科技·机器学习·云计算·deepseek
呵呵哒( ̄▽ ̄)"10 小时前
线性代数:分块矩阵,秩,齐次线性,非齐次线性的解相关经典例题
线性代数·机器学习·矩阵
Blossom.11810 小时前
《探索边缘计算:重塑未来智能物联网的关键技术》
人工智能·深度学习·神经网络·物联网·机器学习·计算机视觉·边缘计算
yolo大师兄12 小时前
【YOLO系列(V5-V12)通用数据集-火灾烟雾检测数据集】
人工智能·深度学习·yolo·目标检测·机器学习
liruiqiang0512 小时前
循环神经网络 - 机器学习任务之同步的序列到序列模式
网络·人工智能·rnn·深度学习·神经网络·机器学习
Elastic 中国社区官方博客13 小时前
Elasticsearch:使用机器学习生成筛选器和分类标签
大数据·人工智能·elasticsearch·机器学习·搜索引擎·ai·分类
你觉得2051 天前
哈尔滨工业大学DeepSeek公开课:探索大模型原理、技术与应用从GPT到DeepSeek|附视频与讲义下载方法
大数据·人工智能·python·gpt·学习·机器学习·aigc
向上的车轮2 天前
NOA是什么?国内自动驾驶技术的现状是怎么样的?
人工智能·机器学习·自动驾驶
你觉得2052 天前
浙江大学朱霖潮研究员:《人工智能重塑科学与工程研究》以蛋白质结构预测为例|附PPT下载方法
大数据·人工智能·机器学习·ai·云计算·aigc·powerpoint