计算各聚类中心

任务描述

本关实现一个函数来计算各簇的中心。

相关知识

在前一个关卡中,我们实现了一个函数来计算距离每个样本最近的簇中心,这样每一个样本都有了所属的簇团,从而将一堆数据分成了 n 个簇,也就是 n 个类。

K-means 算法是一个迭代优化算法,每次迭代我们需要重新计算簇的中心。一般就是通过计算每个簇类所有样本的平均值来获得。可以使用 Numpy 里面的 mean 方法np.mean(x,0)来计算均值。

编程任务

本关卡要求你实现函数 estimate_centers,在右侧编辑器 Begin-End 区间补充代码,需要填充的代码块如下:

复制代码
  1. # -*- coding: utf-8 -*-
  2. import numpy as np
  3. def estimate_centers(X, y_estimated, centers):
  4. """重新计算各聚类中心
  5. 参数:
  6. X - numpy二维数组,代表数据集的样本特征矩阵
  7. y_estimated - numpy数组,估计的各个样本的聚类中心索引
  8. n_clusters - 整数,设定的聚类个数
  9. 返回值:
  10. centers - numpy二维数组,各个样本的聚类中心
  11. """
  12. centers = np.zeros((n_clusters, X.shape[1]))
  13. # 请在此添加实现代码 #
  14. #********** Begin *********#
  15. #********** End ***********#
  16. return centers
测试说明

输入一组向量(数据集)、一个数组(每个元素分配的类中心编号)和一组向量(各聚类中心),输出一组向量(各聚类中心)。平台比对函数 estimate_centers 的输出结果与正确结果的差异,只有完全正确才能进入下一关。

代码:

python 复制代码
# -*- coding: utf-8 -*-
def estimate_centers(X, y_estimated, n_clusters):
    """重新计算各聚类中心
    参数:
        X - numpy二维数组,代表数据集的样本特征矩阵
        y_estimated - numpy数组,估计的各个样本的聚类中心索引
        n_clusters - 整数,设定的聚类个数
    返回值:
        centers - numpy二维数组,各个样本的聚类中心
    """
    import numpy as np
    centers = np.zeros((n_clusters, X.shape[1]))
    #   请在此添加实现代码     #
    #********** Begin *********#
    for i in range(n_clusters):
        centers[i] = np.mean(X[y_estimated==i], 0)
    #********** End ***********#
    return centers    
相关推荐
ydl11282 小时前
机器学习基础知识【 激活函数、损失函数、优化器、 正则化、调度器、指标函数】
python·机器学习
2401_878624793 小时前
期望和方差的计算
人工智能·机器学习
长相忆兮长相忆4 小时前
【机器学习】保序回归平滑校准算法
人工智能·机器学习·回归
IRevers4 小时前
【自动驾驶】经典LSS算法解析——深度估计
人工智能·python·深度学习·算法·机器学习·自动驾驶
Shilong Wang5 小时前
动态物体滤除算法
算法·机器学习·计算机视觉
Gyoku Mint6 小时前
深度学习×第7卷:参数初始化与网络搭建——她第一次挑好初始的重量
人工智能·pytorch·rnn·深度学习·神经网络·算法·机器学习
boooo_hhh6 小时前
第35周—————糖尿病预测模型优化探索
pytorch·深度学习·机器学习
超龄超能程序猿8 小时前
使用 Python 对本地图片进行图像分类
开发语言·人工智能·python·机器学习·分类·数据挖掘·scipy
大千AI助手8 小时前
RLHF:人类反馈强化学习 | 对齐AI与人类价值观的核心引擎
人工智能·深度学习·算法·机器学习·强化学习·rlhf·人类反馈强化学习
在猴站学算法12 小时前
机器学习(西瓜书) 第二章 模型评估与选择
人工智能·机器学习