计算各聚类中心

任务描述

本关实现一个函数来计算各簇的中心。

相关知识

在前一个关卡中,我们实现了一个函数来计算距离每个样本最近的簇中心,这样每一个样本都有了所属的簇团,从而将一堆数据分成了 n 个簇,也就是 n 个类。

K-means 算法是一个迭代优化算法,每次迭代我们需要重新计算簇的中心。一般就是通过计算每个簇类所有样本的平均值来获得。可以使用 Numpy 里面的 mean 方法np.mean(x,0)来计算均值。

编程任务

本关卡要求你实现函数 estimate_centers,在右侧编辑器 Begin-End 区间补充代码,需要填充的代码块如下:

复制代码
  1. # -*- coding: utf-8 -*-
  2. import numpy as np
  3. def estimate_centers(X, y_estimated, centers):
  4. """重新计算各聚类中心
  5. 参数:
  6. X - numpy二维数组,代表数据集的样本特征矩阵
  7. y_estimated - numpy数组,估计的各个样本的聚类中心索引
  8. n_clusters - 整数,设定的聚类个数
  9. 返回值:
  10. centers - numpy二维数组,各个样本的聚类中心
  11. """
  12. centers = np.zeros((n_clusters, X.shape[1]))
  13. # 请在此添加实现代码 #
  14. #********** Begin *********#
  15. #********** End ***********#
  16. return centers
测试说明

输入一组向量(数据集)、一个数组(每个元素分配的类中心编号)和一组向量(各聚类中心),输出一组向量(各聚类中心)。平台比对函数 estimate_centers 的输出结果与正确结果的差异,只有完全正确才能进入下一关。

代码:

python 复制代码
# -*- coding: utf-8 -*-
def estimate_centers(X, y_estimated, n_clusters):
    """重新计算各聚类中心
    参数:
        X - numpy二维数组,代表数据集的样本特征矩阵
        y_estimated - numpy数组,估计的各个样本的聚类中心索引
        n_clusters - 整数,设定的聚类个数
    返回值:
        centers - numpy二维数组,各个样本的聚类中心
    """
    import numpy as np
    centers = np.zeros((n_clusters, X.shape[1]))
    #   请在此添加实现代码     #
    #********** Begin *********#
    for i in range(n_clusters):
        centers[i] = np.mean(X[y_estimated==i], 0)
    #********** End ***********#
    return centers    
相关推荐
海棠AI实验室1 分钟前
AI的进阶之路:从机器学习到深度学习的演变(三)
人工智能·深度学习·机器学习
Watermelo61722 分钟前
详解js柯里化原理及用法,探究柯里化在Redux Selector 的场景模拟、构建复杂的数据流管道、优化深度嵌套函数中的精妙应用
开发语言·前端·javascript·算法·数据挖掘·数据分析·ecmascript
古希腊掌管学习的神1 小时前
[搜广推]王树森推荐系统——矩阵补充&最近邻查找
python·算法·机器学习·矩阵
martian6652 小时前
【人工智能数学基础篇】——深入详解多变量微积分:在机器学习模型中优化损失函数时应用
人工智能·机器学习·微积分·数学基础
人机与认知实验室2 小时前
人、机、环境中各有其神经网络系统
人工智能·深度学习·神经网络·机器学习
古希腊掌管学习的神6 小时前
[机器学习]XGBoost(3)——确定树的结构
人工智能·机器学习
海棠AI实验室9 小时前
AI的进阶之路:从机器学习到深度学习的演变(一)
人工智能·深度学习·机器学习
IT古董10 小时前
【机器学习】机器学习的基本分类-强化学习-策略梯度(Policy Gradient,PG)
人工智能·机器学习·分类
落魄君子10 小时前
GA-BP分类-遗传算法(Genetic Algorithm)和反向传播算法(Backpropagation)
算法·分类·数据挖掘
落魄君子10 小时前
ELM分类-单隐藏层前馈神经网络(Single Hidden Layer Feedforward Neural Network, SLFN)
神经网络·分类·数据挖掘