pytorch中,load_state_dict和torch.load的区别?

在 PyTorch 中,load_state_dicttorch.load 是两个不同的函数,用于不同的目的。

  1. torch.load:

    • 用途: 从磁盘加载一个保存的对象。这个对象可以是一个模型的整个状态字典(包含模型参数)、优化器状态字典、甚至是任意其他 Python 对象。

    • 用法 : 通常用于加载之前用 torch.save 保存的对象。

    • 示例 :

      python 复制代码
      # 保存对象
      torch.save(model.state_dict(), 'model.pth')
      torch.save(optimizer.state_dict(), 'optimizer.pth')
      
      # 加载对象
      model_state_dict = torch.load('model.pth')
      optimizer_state_dict = torch.load('optimizer.pth')
  2. load_state_dict:

    • 用途 : 将加载的状态字典(通常是模型参数)应用到一个模型实例上。这个函数通常用于将 torch.load 加载的状态字典应用到模型或优化器上。

    • 用法: 在模型或优化器实例上调用,用于将加载的状态字典设置为模型或优化器的当前状态。

    • 示例 :

      python 复制代码
      # 创建模型实例
      model = MyModel()
      
      # 加载并应用状态字典
      model.load_state_dict(torch.load('model.pth'))

总结

  • torch.load 用于从磁盘加载任意对象(通常是状态字典)。
  • load_state_dict 用于将加载的状态字典应用到模型或优化器实例上。

以下是一个完整的示例代码,演示如何保存和加载模型参数:

python 复制代码
import torch
import torch.nn as nn
import torch.optim as optim

# 定义模型
class MyModel(nn.Module):
    def __init__(self):
        super(MyModel, self).__init__()
        self.fc = nn.Linear(10, 1)

    def forward(self, x):
        return self.fc(x)

# 创建模型和优化器
model = MyModel()
optimizer = optim.SGD(model.parameters(), lr=0.001)

# 保存模型和优化器的状态字典
torch.save(model.state_dict(), 'model.pth')
torch.save(optimizer.state_dict(), 'optimizer.pth')

# 加载模型和优化器的状态字典
model.load_state_dict(torch.load('model.pth'))
optimizer.load_state_dict(torch.load('optimizer.pth'))

这段代码展示了如何定义一个简单的模型,保存它的状态字典,然后加载这些状态字典到新的模型和优化器实例中。

相关推荐
飞翔的佩奇5 小时前
【完整源码+数据集+部署教程】【天线&水】舰船战舰检测与分类图像分割系统源码&数据集全套:改进yolo11-repvit
前端·python·yolo·计算机视觉·数据集·yolo11·舰船战舰检测与分类图像分割系统
木头左6 小时前
最大回撤约束下ETF多因子动态止盈参数校准方案
python
汤姆yu6 小时前
2026版基于python的协同过滤音乐推荐系统
开发语言·python
汤姆yu6 小时前
基于python的电子商务管理系统
开发语言·python
may_一一7 小时前
pycharm\python 安装下载
ide·python·pycharm
后台开发者Ethan7 小时前
FastAPI之 Python的类型提示
python·fastapi·ai编程
hello kitty w7 小时前
Python学习(11) ----- Python的泛型
windows·python·学习
没有梦想的咸鱼185-1037-16637 小时前
AI Agent结合机器学习与深度学习在全球气候变化驱动因素预测中的应用
人工智能·python·深度学习·机器学习·chatgpt·数据分析
周杰伦_Jay7 小时前
【MCP开发部署流程表格分析】MCP架构解析、开发流程、部署方案、安全性分析
人工智能·深度学习·opencv·机器学习·架构·transformer
晚霞apple8 小时前
多模态大模型的前沿算法综述
论文阅读·人工智能·深度学习·神经网络·机器学习