测试bert_base不同并行方式下的推理性能

测试bert_base不同并行方式下的推理性能

本文测试了bert_base模型在不同并行方式下的推理性能

约束

  • 1.当前服务器上GPU不支持P2P且链路仅为PCIE GEN1 X16

可参考的点

  • deepspeed 推理的使用
  • FSDP推理的使用
  • 如果将权值拆到多卡
  • 自定义pipeline并行(切分网络并插入自定义修改)
  • 如何自动处理pytorch算子输入tensor不在同一个设备上的问题

一.测试数据

并行方式 QPS GPU利用率
deepspeed 4卡tp并行 175.73 rank:0 util:100.00 rank:1 util:100.00 rank:2 util:97.00 rank:3 util:97.00
FSDP 4卡并行 137.80 rank:0 util:40.00 rank:1 util:40.00 rank:2 util:39.00 rank:3 util:40.00
手动将权值平均拆到4张卡,单进程多卡推理 29.34
手动切分成4份,基于NCCL实现pipeline并行 244.76 rank:1 util:40.00 rank:0 util:97.00 rank:2 util:39.00 rank:3 util:78.00

二.测试步骤

1.生成bert配置文件

bash 复制代码
tee ./config.json <<-'EOF'
{
  "architectures": [
    "BertForMaskedLM"
  ],
  "attention_probs_dropout_prob": 0.1,
  "directionality": "bidi",
  "hidden_act": "gelu",
  "hidden_dropout_prob": 0.1,
  "hidden_size": 768,
  "initializer_range": 0.02,
  "intermediate_size": 3072,
  "layer_norm_eps": 1e-12,
  "max_position_embeddings": 512,
  "model_type": "bert",
  "num_attention_heads": 12,
  "num_hidden_layers": 12,
  "pad_token_id": 0,
  "pooler_fc_size": 768,
  "pooler_num_attention_heads": 12,
  "pooler_num_fc_layers": 3,
  "pooler_size_per_head": 128,
  "pooler_type": "first_token_transform",
  "type_vocab_size": 2,
  "vocab_size": 21128
}
EOF

2.安装依赖

bash 复制代码
pip install nvidia-ml-py3

3.deepspeed 4卡tp并行

bash 复制代码
tee ds_bert_infer.py <<-'EOF'
import torch
import deepspeed
import os
from deepspeed.accelerator import get_accelerator
import time
import torch.distributed as dist
import pynvml
import numpy as np
import threading

#统计GPU利用率
class PynvmlGPUUtilizationThread(threading.Thread):
    def __init__(self,device,interval=1):
        super().__init__()
        self.interval = interval
        self.running = True
        self.device=device        
        self.handle = pynvml.nvmlDeviceGetHandleByIndex(device)
        self.utilizations=[]
        
    def run(self):
        while self.running:
            self.get_and_print_gpu_utilization()
            time.sleep(self.interval)
    
    def stop(self):
        self.running = False
    
    def get_and_print_gpu_utilization(self):
        utilization = pynvml.nvmlDeviceGetUtilizationRates(self.handle)
        self.utilizations.append(utilization.gpu)
        
    def data(self):
        return np.max(self.utilizations)
    
def inference():    
    deepspeed.init_distributed(dist_backend='nccl')
    world_size = torch.distributed.get_world_size()
    local_rank=int(os.environ['LOCAL_RANK'])
    rank=torch.distributed.get_rank()
    pynvml.nvmlInit()
    
    torch.manual_seed(1)
    from transformers import AutoModelForMaskedLM,BertConfig
    config=BertConfig.from_pretrained("./config.json")
    model = AutoModelForMaskedLM.from_config(config)
    model.eval()
    engine = deepspeed.init_inference(model,
                                        tensor_parallel={"tp_size": world_size},
                                        dtype=torch.float32,
                                        replace_with_kernel_inject=True)
    device=get_accelerator().current_device_name()
    input_tokens=torch.randint(0,config.vocab_size,(1,128)).to(device)
    epoch=1024
    gpu_thread = PynvmlGPUUtilizationThread(local_rank,interval=1)
    gpu_thread.start()    
    t0=time.time()
    for i in range(epoch):
        outputs = engine(input_tokens)
    dist.barrier()
    torch.cuda.synchronize()
    t1=time.time()
    gpu_thread.stop()
    gpu_thread.join()       
    time.sleep(0.2*rank)        
    if rank==0:
        qps=epoch/(t1-t0)
        print(f"default stream qps:{qps:.2f}")
    print(f"rank:{rank} util:{gpu_thread.data():.2f}")
    
    stream_nbs=[1,2,4,8]    
    for n in stream_nbs:
        dist.barrier()
        if rank==0:
            print("-----------------------------------------------")
        streams=[torch.cuda.Stream() for _ in range(n)]
        total_samples=0        
        gpu_thread = PynvmlGPUUtilizationThread(local_rank,interval=1)
        gpu_thread.start()
        t0=time.time()
        for _ in range(epoch//n):
            for i in range(n):
                with torch.cuda.stream(streams[i]):
                    total_samples+=1
                    outputs = engine(input_tokens)        
        dist.barrier()
        torch.cuda.synchronize()
        t1=time.time()
        gpu_thread.stop()
        gpu_thread.join()    
        time.sleep(0.2*rank)        
        if rank==0:
            qps=total_samples/(t1-t0)
            print(f"{n} streams qps:{qps:.2f}")                
        print(f"rank:{rank} util:{gpu_thread.data():.2f}")
        
if __name__ == "__main__":
    inference()

EOF
deepspeed --num_gpus=4 ds_bert_infer.py

输出

bash 复制代码
------------------------------------------------------
default stream qps: 147.10
rank:0 util:90.00
rank:1 util:86.00
rank:2 util:89.00
rank:3 util:89.00
-----------------------------------------------
1 streams qps:162.62
rank:0 util:100.00
rank:1 util:100.00
rank:2 util:92.00
rank:3 util:88.00
-----------------------------------------------
2 streams qps:177.31
rank:0 util:100.00
rank:1 util:100.00
rank:2 util:99.00
rank:3 util:98.00
-----------------------------------------------
4 streams qps:176.11
rank:0 util:100.00
rank:1 util:100.00
rank:2 util:98.00
rank:3 util:97.00
-----------------------------------------------
8 streams qps:175.73
rank:0 util:100.00
rank:1 util:100.00
rank:2 util:97.00
rank:3 util:97.00

4.FSDP 4卡并行

python 复制代码
tee fsdp_bert_infer.py <<-'EOF'
import time
import os
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
import torchvision.models as models
import torch.nn as nn
import torch.nn.init as init
import time
import pynvml
import numpy as np
import threading

class PynvmlGPUUtilizationThread(threading.Thread):
    def __init__(self,device,interval=1):
        super().__init__()
        self.interval = interval
        self.running = True
        self.device=device        
        self.handle = pynvml.nvmlDeviceGetHandleByIndex(device)
        self.utilizations=[]
        
    def run(self):
        while self.running:
            self.get_and_print_gpu_utilization()
            time.sleep(self.interval)
    
    def stop(self):
        self.running = False
    
    def get_and_print_gpu_utilization(self):
        utilization = pynvml.nvmlDeviceGetUtilizationRates(self.handle)
        self.utilizations.append(utilization.gpu)
        
    def data(self):
        return np.max(self.utilizations)
        
def cleanup():
    dist.destroy_process_group()

def demo_fsdp(rank, world_size,multi_stream):
    
    pynvml.nvmlInit()
    device = torch.device(f"cuda:{rank}")
    torch.manual_seed(1)
    from transformers import AutoModelForMaskedLM,BertConfig
    config=BertConfig.from_pretrained("./config.json")
    model = AutoModelForMaskedLM.from_config(config)
    model.eval()
    
    fsdp_model = FSDP(model,forward_prefetch=True).to(device)
    input_tokens=torch.randint(0,config.vocab_size,(1,128)).to(device)
    epoch_sz=1024
    gpu_thread = PynvmlGPUUtilizationThread(local_rank,interval=1)
    gpu_thread.start()    
    sz=8
    total_sample=0
    streams=[torch.cuda.Stream() for _ in range(sz)]
    t0=time.time()
    for epoch in range(epoch_sz):
        with torch.no_grad():
            outputs=[]
            if multi_stream:
                for i in range(sz):
                    with torch.cuda.stream(streams[i]):
                        total_sample+=1
                        outputs.append(fsdp_model(input_tokens))
            else:
                output = fsdp_model(input_tokens)
                total_sample+=1
    torch.cuda.synchronize(rank)
    t1=time.time()
    gpu_thread.stop()
    gpu_thread.join()       
    time.sleep(0.2*rank)        
    if rank==0:
        qps=total_sample/(t1-t0)
        print(f"qps:{qps:.2f}")
    print(f"rank:{rank} util:{gpu_thread.data():.2f}")
    cleanup()

if __name__ == "__main__":
    dist.init_process_group(backend='nccl')
    world_size = torch.distributed.get_world_size()
    rank=torch.distributed.get_rank()
    local_rank=int(os.environ['LOCAL_RANK'])
    torch.cuda.set_device(local_rank)
    demo_fsdp(local_rank,world_size,True)
EOF
torchrun -m --nnodes=1 --nproc_per_node=4 fsdp_bert_infer

输出

bash 复制代码
qps:137.80
rank:0 util:40.00
rank:1 util:40.00
rank:2 util:39.00
rank:3 util:40.00

5.手动将权值平均拆到4张卡,单进程多卡推理

python 复制代码
tee split_bert_infer.py <<-'EOF'
import torch
import os
import time
from torch.utils._python_dispatch import TorchDispatchMode
from dataclasses import dataclass
from typing import Any

@dataclass
class _ProfilerState:
    cls: Any
    object: Any = None

class EmptyModule(torch.nn.Module):
    def __init__(self):
        super(EmptyModule, self).__init__()
        pass
    def forward(self,x):
        return x
        
class TorchDumpDispatchMode(TorchDispatchMode):
    def __init__(self,parent):
        super().__init__()
        self.parent=parent
        self.op_index=0
        self.cvt_count=0

    def get_max_gpu_id(self,tensors):
        max_gpu_id = -1
        max_index = -1
        tensor_index=[]
        for i, tensor in enumerate(tensors):
            if not isinstance(tensor, torch.Tensor):
                continue
            tensor_index.append(i)
            if tensor.is_cuda:
                gpu_id = tensor.get_device()
                if gpu_id > max_gpu_id:
                    max_gpu_id = gpu_id
                    max_index = i
        if max_gpu_id == -1:
            return None, None,tensor_index
        return max_index, max_gpu_id,tensor_index

    def convert(self,op_type,tensor_list):
        index, gpu_id,tensor_index = self.get_max_gpu_id(tensor_list)
        if index is None:
            return
        keep_index=set(tensor_index)-set([index])
        device=torch.device(f"cuda:{gpu_id}")
        for i in keep_index:
            if tensor_list[i].device!=device:
                #print(f"{op_type} {i} {tensor_list[i].device} -> {device}")
                tensor_list[i].data=tensor_list[i].data.to(device,non_blocking=True) 
                #卡间通信是串行的,所有多stream并不能充分提升性能

    def __torch_dispatch__(self, func, types, args=(),kwargs=None):
        func_packet = func._overloadpacket
        if kwargs is None:
            kwargs = {}
        op_type=f"{func}"
        self.op_index+=1
        if isinstance(args, list) or isinstance(args, tuple):
            self.convert(op_type,args)
        elif isinstance(args[0], list) or isinstance(args[0], tuple):
            self.convert(op_type,args[0])
        else:
            print(op_type)
        output= func(*args,**kwargs)
        return output

class TorchDumper:
    def __init__(self,**kwargs):
        self.p= _ProfilerState(TorchDumpDispatchMode)
        self.kwargs=kwargs

    def __enter__(self):
        if self.p.object is None:
            o = self.p.cls(self,**self.kwargs)
            o.__enter__()
            self.p.object = o
        else:
            self.p.object.step()
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        TorchDumper._CURRENT_Dumper = None
        if self.p.object is not None:
            self.p.object.__exit__(exc_type, exc_val, exc_tb)
            del self.p.object
            
torch.manual_seed(1)
from transformers import AutoModelForMaskedLM,BertConfig
config=BertConfig.from_pretrained("./config.json")
model = AutoModelForMaskedLM.from_config(config)
model.eval()

cur_dev=0
from collections import OrderedDict

param_size=OrderedDict()
total_size=0
for name, param in model.named_parameters():
    #print(f"{name} {param.device} {param.shape}")
    sz=param.numel()*param.element_size()
    key=".".join(name.split(".")[:-1])
    if key not in param_size:
        param_size[key]=0
    param_size[key]+=sz
    total_size+=sz

for name, param in model.named_buffers():
    #print(name,param.device)
    sz=param.numel()*param.element_size()
    key=".".join(name.split(".")[:-1])
    if key not in param_size:
        param_size[key]=0
    param_size[key]+=sz
    total_size+=sz

sz_per_dev=total_size/4
cur_size=0

dev_map=OrderedDict()
for k,v in param_size.items():
    sz=v
    cur_size+=sz
    if cur_size>=sz_per_dev:
        print(cur_dev,cur_size)
        cur_size=0
        cur_dev+=1
    dev_map[k]=cur_dev

for name, param in model.named_parameters():
    key=".".join(name.split(".")[:-1])
    op=dict(model.named_parameters())[name]
    device=f"cuda:{dev_map[key]}"
    op.data=op.data.to(device)

for name, param in model.named_buffers():
    key=".".join(name.split(".")[:-1])
    op=dict(model.named_buffers())[name]
    device=f"cuda:{dev_map[key]}"
    op.data=op.data.to(device)

with TorchDumper():
    sz=4
    input_tokens=torch.randint(0,config.vocab_size,(1,128)).to("cuda:0")
    streams=[torch.cuda.Stream() for _ in range(sz)]
    batch_size=0
    t0=time.time()
    for epoch in range(1024):
        outputs=[]
        for i in range(sz):
            with torch.cuda.stream(streams[i]):
                batch_size+=1
                outputs.append(model(input_tokens))
    torch.cuda.synchronize()
    t1=time.time()
    print("qps:",batch_size/(t1-t0))
EOF
python split_bert_infer.py

输出

bash 复制代码
qps: 29.34

6.手动切分成4份,基于NCCL实现pipeline并行

python 复制代码
tee pp_bert_infer.py <<-'EOF'
import torch
import os
import time
from collections import OrderedDict
import torch.distributed as dist
import torch.nn as nn
import torch.nn.init as init
import numpy as np
import time
import pynvml
import numpy as np
import threading

class EmptyModule(torch.nn.Module):
    def __init__(self):
        super(EmptyModule, self).__init__()
        pass
    def forward(self,x):
        return x[0]

class PynvmlGPUUtilizationThread(threading.Thread):
    def __init__(self,device,interval=1):
        super().__init__()
        self.interval = interval
        self.running = True
        self.device=device        
        self.handle = pynvml.nvmlDeviceGetHandleByIndex(device)
        self.utilizations=[]
        
    def run(self):
        while self.running:
            self.get_and_print_gpu_utilization()
            time.sleep(self.interval)
    
    def stop(self):
        self.running = False
    
    def get_and_print_gpu_utilization(self):
        utilization = pynvml.nvmlDeviceGetUtilizationRates(self.handle)
        self.utilizations.append(utilization.gpu)
        
    def data(self):
        return np.max(self.utilizations)

pynvml.nvmlInit()
        
dist.init_process_group(backend='nccl')
world_size = torch.distributed.get_world_size()
rank=torch.distributed.get_rank()
local_rank=int(os.environ['LOCAL_RANK'])
torch.cuda.set_device(local_rank)

torch.manual_seed(1)
from transformers import AutoModelForMaskedLM,BertConfig
config=BertConfig.from_pretrained("./config.json")
model = AutoModelForMaskedLM.from_config(config)
model.eval()

divided=[]
#查看modeling_bert.py找到相关的名字
submodules=[]
submodules.append(("embeddings",model.bert.embeddings))        
for i,m in enumerate(model.bert.encoder.layer[:3]):
    submodules.append((f"{i}",m))
    submodules.append((f"{i}-1",EmptyModule()))   
divided.append(submodules)

submodules=[]
for i,m in enumerate(model.bert.encoder.layer[3:7]):
    submodules.append((f"{i}",m))
    submodules.append((f"{i}-1",EmptyModule()))   
divided.append(submodules)

submodules=[]
   
for i,m in enumerate(model.bert.encoder.layer[7:11]):
    submodules.append((f"{i}",m))
    submodules.append((f"{i}-1",EmptyModule()))   
divided.append(submodules)

submodules=[]
   
for i,m in enumerate(model.bert.encoder.layer[11:]):
    submodules.append((f"{i}",m))
    submodules.append((f"{i}-1",EmptyModule()))
submodules.append(("cls",model.cls))        
divided.append(submodules)

device=f"cuda:{local_rank}"
example_input=torch.randint(0,config.vocab_size,(1,128)).to(device)
submodule=torch.nn.Sequential(OrderedDict(divided[local_rank])).to(device)

sreq=None
ts=[]

gpu_thread = PynvmlGPUUtilizationThread(local_rank,interval=1)
gpu_thread.start()
t0=time.time()
for epoch in range(1000):
    if sreq is not None and not sreq.is_completed():
        sreq.wait()
        sreq=None
    if local_rank!=0:
        tensor_size = torch.empty((3,), dtype=torch.int64).to(device)
        torch.distributed.recv(tensor_size,local_rank-1)
        example_input = torch.empty(tensor_size.tolist()).to(device)
        torch.distributed.recv(example_input,local_rank-1)
        #print("recv:",local_rank-1,example_input.shape)
    else:
        torch.manual_seed(1)
    output=submodule(example_input)
    if local_rank<world_size-1:
        #print("local_rank out:",output.shape)
        tensor_size = torch.tensor(output.size(), dtype=torch.int64).to(device)
        torch.distributed.isend(tensor_size,local_rank+1)
        sreq=torch.distributed.isend(output,local_rank+1)
        #torch.distributed.send(output,local_rank+1)
    elif local_rank==world_size-1:
        ts.append(time.time())
dist.barrier()
t1=time.time()

gpu_thread.stop()
gpu_thread.join()   
time.sleep(0.2*local_rank)        
print(f"rank:{local_rank} util:{gpu_thread.data():.2f}")
    
if local_rank==world_size-1:
    ts=ts[len(ts)//2:]
    print("latency:",ts[1]-ts[0],"qps:",len(ts)/(ts[-1]-ts[0]),1000/(t1-t0))
EOF
torchrun -m --nnodes=1 --nproc_per_node=4 pp_bert_infer	

输出:

bash 复制代码
rank:1 util:40.00
rank:0 util:97.00
rank:2 util:39.00
rank:3 util:78.00
latency: 0.002396106719970703 qps: 408.6954420411698 244.76515394402227
相关推荐
明朝百晓生1 小时前
强化学习【Monte Carlo Learning][MC Basic 算法]
人工智能·机器学习
云知谷6 小时前
【C++基本功】C++适合做什么,哪些领域适合哪些领域不适合?
c语言·开发语言·c++·人工智能·团队开发
rit84324996 小时前
基于MATLAB实现基于距离的离群点检测算法
人工智能·算法·matlab
初学小刘7 小时前
深度学习:从图片数据到模型训练(十分类)
人工智能·深度学习
递归不收敛7 小时前
大语言模型(LLM)入门笔记:嵌入向量与位置信息
人工智能·笔记·语言模型
之墨_8 小时前
【大语言模型】—— 自注意力机制及其变体(交叉注意力、因果注意力、多头注意力)的代码实现
人工智能·语言模型·自然语言处理
2301_821919929 小时前
深度学习(四)
pytorch·深度学习
从孑开始9 小时前
ManySpeech.MoonshineAsr 使用指南
人工智能·ai·c#·.net·私有化部署·语音识别·onnx·asr·moonshine
涛涛讲AI9 小时前
一段音频多段字幕,让音频能够流畅自然对应字幕 AI生成视频,扣子生成剪映视频草稿
人工智能·音视频·语音识别
可触的未来,发芽的智生9 小时前
新奇特:黑猫警长的纳米世界,忆阻器与神经网络的智慧
javascript·人工智能·python·神经网络·架构