测试bert_base不同并行方式下的推理性能

测试bert_base不同并行方式下的推理性能

本文测试了bert_base模型在不同并行方式下的推理性能

约束

  • 1.当前服务器上GPU不支持P2P且链路仅为PCIE GEN1 X16

可参考的点

  • deepspeed 推理的使用
  • FSDP推理的使用
  • 如果将权值拆到多卡
  • 自定义pipeline并行(切分网络并插入自定义修改)
  • 如何自动处理pytorch算子输入tensor不在同一个设备上的问题

一.测试数据

并行方式 QPS GPU利用率
deepspeed 4卡tp并行 175.73 rank:0 util:100.00 rank:1 util:100.00 rank:2 util:97.00 rank:3 util:97.00
FSDP 4卡并行 137.80 rank:0 util:40.00 rank:1 util:40.00 rank:2 util:39.00 rank:3 util:40.00
手动将权值平均拆到4张卡,单进程多卡推理 29.34
手动切分成4份,基于NCCL实现pipeline并行 244.76 rank:1 util:40.00 rank:0 util:97.00 rank:2 util:39.00 rank:3 util:78.00

二.测试步骤

1.生成bert配置文件

bash 复制代码
tee ./config.json <<-'EOF'
{
  "architectures": [
    "BertForMaskedLM"
  ],
  "attention_probs_dropout_prob": 0.1,
  "directionality": "bidi",
  "hidden_act": "gelu",
  "hidden_dropout_prob": 0.1,
  "hidden_size": 768,
  "initializer_range": 0.02,
  "intermediate_size": 3072,
  "layer_norm_eps": 1e-12,
  "max_position_embeddings": 512,
  "model_type": "bert",
  "num_attention_heads": 12,
  "num_hidden_layers": 12,
  "pad_token_id": 0,
  "pooler_fc_size": 768,
  "pooler_num_attention_heads": 12,
  "pooler_num_fc_layers": 3,
  "pooler_size_per_head": 128,
  "pooler_type": "first_token_transform",
  "type_vocab_size": 2,
  "vocab_size": 21128
}
EOF

2.安装依赖

bash 复制代码
pip install nvidia-ml-py3

3.deepspeed 4卡tp并行

bash 复制代码
tee ds_bert_infer.py <<-'EOF'
import torch
import deepspeed
import os
from deepspeed.accelerator import get_accelerator
import time
import torch.distributed as dist
import pynvml
import numpy as np
import threading

#统计GPU利用率
class PynvmlGPUUtilizationThread(threading.Thread):
    def __init__(self,device,interval=1):
        super().__init__()
        self.interval = interval
        self.running = True
        self.device=device        
        self.handle = pynvml.nvmlDeviceGetHandleByIndex(device)
        self.utilizations=[]
        
    def run(self):
        while self.running:
            self.get_and_print_gpu_utilization()
            time.sleep(self.interval)
    
    def stop(self):
        self.running = False
    
    def get_and_print_gpu_utilization(self):
        utilization = pynvml.nvmlDeviceGetUtilizationRates(self.handle)
        self.utilizations.append(utilization.gpu)
        
    def data(self):
        return np.max(self.utilizations)
    
def inference():    
    deepspeed.init_distributed(dist_backend='nccl')
    world_size = torch.distributed.get_world_size()
    local_rank=int(os.environ['LOCAL_RANK'])
    rank=torch.distributed.get_rank()
    pynvml.nvmlInit()
    
    torch.manual_seed(1)
    from transformers import AutoModelForMaskedLM,BertConfig
    config=BertConfig.from_pretrained("./config.json")
    model = AutoModelForMaskedLM.from_config(config)
    model.eval()
    engine = deepspeed.init_inference(model,
                                        tensor_parallel={"tp_size": world_size},
                                        dtype=torch.float32,
                                        replace_with_kernel_inject=True)
    device=get_accelerator().current_device_name()
    input_tokens=torch.randint(0,config.vocab_size,(1,128)).to(device)
    epoch=1024
    gpu_thread = PynvmlGPUUtilizationThread(local_rank,interval=1)
    gpu_thread.start()    
    t0=time.time()
    for i in range(epoch):
        outputs = engine(input_tokens)
    dist.barrier()
    torch.cuda.synchronize()
    t1=time.time()
    gpu_thread.stop()
    gpu_thread.join()       
    time.sleep(0.2*rank)        
    if rank==0:
        qps=epoch/(t1-t0)
        print(f"default stream qps:{qps:.2f}")
    print(f"rank:{rank} util:{gpu_thread.data():.2f}")
    
    stream_nbs=[1,2,4,8]    
    for n in stream_nbs:
        dist.barrier()
        if rank==0:
            print("-----------------------------------------------")
        streams=[torch.cuda.Stream() for _ in range(n)]
        total_samples=0        
        gpu_thread = PynvmlGPUUtilizationThread(local_rank,interval=1)
        gpu_thread.start()
        t0=time.time()
        for _ in range(epoch//n):
            for i in range(n):
                with torch.cuda.stream(streams[i]):
                    total_samples+=1
                    outputs = engine(input_tokens)        
        dist.barrier()
        torch.cuda.synchronize()
        t1=time.time()
        gpu_thread.stop()
        gpu_thread.join()    
        time.sleep(0.2*rank)        
        if rank==0:
            qps=total_samples/(t1-t0)
            print(f"{n} streams qps:{qps:.2f}")                
        print(f"rank:{rank} util:{gpu_thread.data():.2f}")
        
if __name__ == "__main__":
    inference()

EOF
deepspeed --num_gpus=4 ds_bert_infer.py

输出

bash 复制代码
------------------------------------------------------
default stream qps: 147.10
rank:0 util:90.00
rank:1 util:86.00
rank:2 util:89.00
rank:3 util:89.00
-----------------------------------------------
1 streams qps:162.62
rank:0 util:100.00
rank:1 util:100.00
rank:2 util:92.00
rank:3 util:88.00
-----------------------------------------------
2 streams qps:177.31
rank:0 util:100.00
rank:1 util:100.00
rank:2 util:99.00
rank:3 util:98.00
-----------------------------------------------
4 streams qps:176.11
rank:0 util:100.00
rank:1 util:100.00
rank:2 util:98.00
rank:3 util:97.00
-----------------------------------------------
8 streams qps:175.73
rank:0 util:100.00
rank:1 util:100.00
rank:2 util:97.00
rank:3 util:97.00

4.FSDP 4卡并行

python 复制代码
tee fsdp_bert_infer.py <<-'EOF'
import time
import os
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
import torchvision.models as models
import torch.nn as nn
import torch.nn.init as init
import time
import pynvml
import numpy as np
import threading

class PynvmlGPUUtilizationThread(threading.Thread):
    def __init__(self,device,interval=1):
        super().__init__()
        self.interval = interval
        self.running = True
        self.device=device        
        self.handle = pynvml.nvmlDeviceGetHandleByIndex(device)
        self.utilizations=[]
        
    def run(self):
        while self.running:
            self.get_and_print_gpu_utilization()
            time.sleep(self.interval)
    
    def stop(self):
        self.running = False
    
    def get_and_print_gpu_utilization(self):
        utilization = pynvml.nvmlDeviceGetUtilizationRates(self.handle)
        self.utilizations.append(utilization.gpu)
        
    def data(self):
        return np.max(self.utilizations)
        
def cleanup():
    dist.destroy_process_group()

def demo_fsdp(rank, world_size,multi_stream):
    
    pynvml.nvmlInit()
    device = torch.device(f"cuda:{rank}")
    torch.manual_seed(1)
    from transformers import AutoModelForMaskedLM,BertConfig
    config=BertConfig.from_pretrained("./config.json")
    model = AutoModelForMaskedLM.from_config(config)
    model.eval()
    
    fsdp_model = FSDP(model,forward_prefetch=True).to(device)
    input_tokens=torch.randint(0,config.vocab_size,(1,128)).to(device)
    epoch_sz=1024
    gpu_thread = PynvmlGPUUtilizationThread(local_rank,interval=1)
    gpu_thread.start()    
    sz=8
    total_sample=0
    streams=[torch.cuda.Stream() for _ in range(sz)]
    t0=time.time()
    for epoch in range(epoch_sz):
        with torch.no_grad():
            outputs=[]
            if multi_stream:
                for i in range(sz):
                    with torch.cuda.stream(streams[i]):
                        total_sample+=1
                        outputs.append(fsdp_model(input_tokens))
            else:
                output = fsdp_model(input_tokens)
                total_sample+=1
    torch.cuda.synchronize(rank)
    t1=time.time()
    gpu_thread.stop()
    gpu_thread.join()       
    time.sleep(0.2*rank)        
    if rank==0:
        qps=total_sample/(t1-t0)
        print(f"qps:{qps:.2f}")
    print(f"rank:{rank} util:{gpu_thread.data():.2f}")
    cleanup()

if __name__ == "__main__":
    dist.init_process_group(backend='nccl')
    world_size = torch.distributed.get_world_size()
    rank=torch.distributed.get_rank()
    local_rank=int(os.environ['LOCAL_RANK'])
    torch.cuda.set_device(local_rank)
    demo_fsdp(local_rank,world_size,True)
EOF
torchrun -m --nnodes=1 --nproc_per_node=4 fsdp_bert_infer

输出

bash 复制代码
qps:137.80
rank:0 util:40.00
rank:1 util:40.00
rank:2 util:39.00
rank:3 util:40.00

5.手动将权值平均拆到4张卡,单进程多卡推理

python 复制代码
tee split_bert_infer.py <<-'EOF'
import torch
import os
import time
from torch.utils._python_dispatch import TorchDispatchMode
from dataclasses import dataclass
from typing import Any

@dataclass
class _ProfilerState:
    cls: Any
    object: Any = None

class EmptyModule(torch.nn.Module):
    def __init__(self):
        super(EmptyModule, self).__init__()
        pass
    def forward(self,x):
        return x
        
class TorchDumpDispatchMode(TorchDispatchMode):
    def __init__(self,parent):
        super().__init__()
        self.parent=parent
        self.op_index=0
        self.cvt_count=0

    def get_max_gpu_id(self,tensors):
        max_gpu_id = -1
        max_index = -1
        tensor_index=[]
        for i, tensor in enumerate(tensors):
            if not isinstance(tensor, torch.Tensor):
                continue
            tensor_index.append(i)
            if tensor.is_cuda:
                gpu_id = tensor.get_device()
                if gpu_id > max_gpu_id:
                    max_gpu_id = gpu_id
                    max_index = i
        if max_gpu_id == -1:
            return None, None,tensor_index
        return max_index, max_gpu_id,tensor_index

    def convert(self,op_type,tensor_list):
        index, gpu_id,tensor_index = self.get_max_gpu_id(tensor_list)
        if index is None:
            return
        keep_index=set(tensor_index)-set([index])
        device=torch.device(f"cuda:{gpu_id}")
        for i in keep_index:
            if tensor_list[i].device!=device:
                #print(f"{op_type} {i} {tensor_list[i].device} -> {device}")
                tensor_list[i].data=tensor_list[i].data.to(device,non_blocking=True) 
                #卡间通信是串行的,所有多stream并不能充分提升性能

    def __torch_dispatch__(self, func, types, args=(),kwargs=None):
        func_packet = func._overloadpacket
        if kwargs is None:
            kwargs = {}
        op_type=f"{func}"
        self.op_index+=1
        if isinstance(args, list) or isinstance(args, tuple):
            self.convert(op_type,args)
        elif isinstance(args[0], list) or isinstance(args[0], tuple):
            self.convert(op_type,args[0])
        else:
            print(op_type)
        output= func(*args,**kwargs)
        return output

class TorchDumper:
    def __init__(self,**kwargs):
        self.p= _ProfilerState(TorchDumpDispatchMode)
        self.kwargs=kwargs

    def __enter__(self):
        if self.p.object is None:
            o = self.p.cls(self,**self.kwargs)
            o.__enter__()
            self.p.object = o
        else:
            self.p.object.step()
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        TorchDumper._CURRENT_Dumper = None
        if self.p.object is not None:
            self.p.object.__exit__(exc_type, exc_val, exc_tb)
            del self.p.object
            
torch.manual_seed(1)
from transformers import AutoModelForMaskedLM,BertConfig
config=BertConfig.from_pretrained("./config.json")
model = AutoModelForMaskedLM.from_config(config)
model.eval()

cur_dev=0
from collections import OrderedDict

param_size=OrderedDict()
total_size=0
for name, param in model.named_parameters():
    #print(f"{name} {param.device} {param.shape}")
    sz=param.numel()*param.element_size()
    key=".".join(name.split(".")[:-1])
    if key not in param_size:
        param_size[key]=0
    param_size[key]+=sz
    total_size+=sz

for name, param in model.named_buffers():
    #print(name,param.device)
    sz=param.numel()*param.element_size()
    key=".".join(name.split(".")[:-1])
    if key not in param_size:
        param_size[key]=0
    param_size[key]+=sz
    total_size+=sz

sz_per_dev=total_size/4
cur_size=0

dev_map=OrderedDict()
for k,v in param_size.items():
    sz=v
    cur_size+=sz
    if cur_size>=sz_per_dev:
        print(cur_dev,cur_size)
        cur_size=0
        cur_dev+=1
    dev_map[k]=cur_dev

for name, param in model.named_parameters():
    key=".".join(name.split(".")[:-1])
    op=dict(model.named_parameters())[name]
    device=f"cuda:{dev_map[key]}"
    op.data=op.data.to(device)

for name, param in model.named_buffers():
    key=".".join(name.split(".")[:-1])
    op=dict(model.named_buffers())[name]
    device=f"cuda:{dev_map[key]}"
    op.data=op.data.to(device)

with TorchDumper():
    sz=4
    input_tokens=torch.randint(0,config.vocab_size,(1,128)).to("cuda:0")
    streams=[torch.cuda.Stream() for _ in range(sz)]
    batch_size=0
    t0=time.time()
    for epoch in range(1024):
        outputs=[]
        for i in range(sz):
            with torch.cuda.stream(streams[i]):
                batch_size+=1
                outputs.append(model(input_tokens))
    torch.cuda.synchronize()
    t1=time.time()
    print("qps:",batch_size/(t1-t0))
EOF
python split_bert_infer.py

输出

bash 复制代码
qps: 29.34

6.手动切分成4份,基于NCCL实现pipeline并行

python 复制代码
tee pp_bert_infer.py <<-'EOF'
import torch
import os
import time
from collections import OrderedDict
import torch.distributed as dist
import torch.nn as nn
import torch.nn.init as init
import numpy as np
import time
import pynvml
import numpy as np
import threading

class EmptyModule(torch.nn.Module):
    def __init__(self):
        super(EmptyModule, self).__init__()
        pass
    def forward(self,x):
        return x[0]

class PynvmlGPUUtilizationThread(threading.Thread):
    def __init__(self,device,interval=1):
        super().__init__()
        self.interval = interval
        self.running = True
        self.device=device        
        self.handle = pynvml.nvmlDeviceGetHandleByIndex(device)
        self.utilizations=[]
        
    def run(self):
        while self.running:
            self.get_and_print_gpu_utilization()
            time.sleep(self.interval)
    
    def stop(self):
        self.running = False
    
    def get_and_print_gpu_utilization(self):
        utilization = pynvml.nvmlDeviceGetUtilizationRates(self.handle)
        self.utilizations.append(utilization.gpu)
        
    def data(self):
        return np.max(self.utilizations)

pynvml.nvmlInit()
        
dist.init_process_group(backend='nccl')
world_size = torch.distributed.get_world_size()
rank=torch.distributed.get_rank()
local_rank=int(os.environ['LOCAL_RANK'])
torch.cuda.set_device(local_rank)

torch.manual_seed(1)
from transformers import AutoModelForMaskedLM,BertConfig
config=BertConfig.from_pretrained("./config.json")
model = AutoModelForMaskedLM.from_config(config)
model.eval()

divided=[]
#查看modeling_bert.py找到相关的名字
submodules=[]
submodules.append(("embeddings",model.bert.embeddings))        
for i,m in enumerate(model.bert.encoder.layer[:3]):
    submodules.append((f"{i}",m))
    submodules.append((f"{i}-1",EmptyModule()))   
divided.append(submodules)

submodules=[]
for i,m in enumerate(model.bert.encoder.layer[3:7]):
    submodules.append((f"{i}",m))
    submodules.append((f"{i}-1",EmptyModule()))   
divided.append(submodules)

submodules=[]
   
for i,m in enumerate(model.bert.encoder.layer[7:11]):
    submodules.append((f"{i}",m))
    submodules.append((f"{i}-1",EmptyModule()))   
divided.append(submodules)

submodules=[]
   
for i,m in enumerate(model.bert.encoder.layer[11:]):
    submodules.append((f"{i}",m))
    submodules.append((f"{i}-1",EmptyModule()))
submodules.append(("cls",model.cls))        
divided.append(submodules)

device=f"cuda:{local_rank}"
example_input=torch.randint(0,config.vocab_size,(1,128)).to(device)
submodule=torch.nn.Sequential(OrderedDict(divided[local_rank])).to(device)

sreq=None
ts=[]

gpu_thread = PynvmlGPUUtilizationThread(local_rank,interval=1)
gpu_thread.start()
t0=time.time()
for epoch in range(1000):
    if sreq is not None and not sreq.is_completed():
        sreq.wait()
        sreq=None
    if local_rank!=0:
        tensor_size = torch.empty((3,), dtype=torch.int64).to(device)
        torch.distributed.recv(tensor_size,local_rank-1)
        example_input = torch.empty(tensor_size.tolist()).to(device)
        torch.distributed.recv(example_input,local_rank-1)
        #print("recv:",local_rank-1,example_input.shape)
    else:
        torch.manual_seed(1)
    output=submodule(example_input)
    if local_rank<world_size-1:
        #print("local_rank out:",output.shape)
        tensor_size = torch.tensor(output.size(), dtype=torch.int64).to(device)
        torch.distributed.isend(tensor_size,local_rank+1)
        sreq=torch.distributed.isend(output,local_rank+1)
        #torch.distributed.send(output,local_rank+1)
    elif local_rank==world_size-1:
        ts.append(time.time())
dist.barrier()
t1=time.time()

gpu_thread.stop()
gpu_thread.join()   
time.sleep(0.2*local_rank)        
print(f"rank:{local_rank} util:{gpu_thread.data():.2f}")
    
if local_rank==world_size-1:
    ts=ts[len(ts)//2:]
    print("latency:",ts[1]-ts[0],"qps:",len(ts)/(ts[-1]-ts[0]),1000/(t1-t0))
EOF
torchrun -m --nnodes=1 --nproc_per_node=4 pp_bert_infer	

输出:

bash 复制代码
rank:1 util:40.00
rank:0 util:97.00
rank:2 util:39.00
rank:3 util:78.00
latency: 0.002396106719970703 qps: 408.6954420411698 244.76515394402227
相关推荐
沛沛老爹1 分钟前
Web转AI架构篇 Agent Skills vs MCP:工具箱与标准接口的本质区别
java·开发语言·前端·人工智能·架构·企业开发
ZKNOW甄知科技12 分钟前
IT自动分派单据:让企业服务流程更智能、更高效的关键技术
大数据·运维·数据库·人工智能·低代码·自动化
OpenCSG14 分钟前
如何通过 AgenticOps x CSGHub 重塑企业 AI 生产力
人工智能
Nautiluss23 分钟前
一起调试XVF3800麦克风阵列(十四)
linux·人工智能·音频·语音识别·dsp开发
地瓜伯伯25 分钟前
elasticsearch性能调优方法原理与实战
人工智能·elasticsearch·语言模型·数据分析
ZCXZ12385296a29 分钟前
YOLO13改进模型C3k2-SFHF实现:阻尼器类型识别与分类系统详解
人工智能·分类·数据挖掘
黑客思维者30 分钟前
2025年AI垃圾(AI Slop)现象综合研究报告:规模、影响与治理路径
人工智能·搜索引擎·百度
Aspect of twilight1 小时前
QwenVL 模型输入细节
人工智能·qwen
悟纤1 小时前
Suno 电子舞曲创作指南:102 个实用 Prompt 精选 | Suno高级篇 | 第20篇
人工智能·prompt·suno·suno ai·suno api·ai music
北京耐用通信1 小时前
石油化工车间的“通讯救星”:耐达讯自动化Profibus总线光纤中继器有多实用?
人工智能·科技·物联网·自动化·信息与通信