李宏毅深度学习01——基本概念简介

视频链接

基本概念

Regression(回归):

类似于填空

Classification(分类):

类似于选择

Structure Learning(机器学习):

??

机器学习找对应函数的步骤

1、写出一个带有未知参数的函数

Model(模型):一个函数,比如y = b + w * x1(y是要预测的,x1是已知的)

weight(权重):上述中的w就是权重

bias(偏移):上述中的b就是偏移

2、定义训练数据的损失函数

loss(损失函数):一个函数,输入是模型中的参数 L(b, w),输出的值代表这组b,w好还是不好,值越大,代表b,w越不好

MAE(mean absolute error): 均值绝对误差

MSE(mean square error): 均值方差

Cross-entropy:如果预测值和实际值都是随机分布的,则使用这种方式查看损失值

label(真实值):真实的值,类似于训练数据

Error surface(误差面):等高线图

3、Optimization(优化)

找一个w和b,使得Loss结果最小

Gradient Descent(梯度下降)


Learning rate:学习速率 n

hyper parameters:超参数 自己设定

local minima局部最优

global minima全局最优

梯度下降有个问题就是容易导致局部最优?其实局部最优是一个假问题!

上述说的只是一个参数的情况,实际上多个参数也是一样的做法

由线性模型推广至非线性模型

前面的步骤统称训练,实际上都是基于已知数据进行的,我们的目的是要通过这个式子预测新的数据


为此,我们应该修改模型,以7天为一个周期来预测

linear models:线性模型,下面如图,就是考虑不同周期对应的线性模型

model bias:模型偏移

与之前说的bias不一样,这里说的是模型本身的限制导致没办法模拟真实的情况

所以我们需要一个更复杂的有未知参数的函数来替代线性模型

piecewise linear curves:分段线性曲线

这里面哪怕红色线不是线性的,而是曲线的,我们也可以通过微分的方式,选取足够多的点将其看成是线性的

那蓝色线的函数该怎么写出来呢,有一个很出名的函数叫做sigmoid,虽然是曲线,但是很接近蓝色线

sigmoid:S型线段对应的函数

而蓝色线的函数我们一般将其称作hard sigmoid

通过调整c、b、w这三个值,我们可以得到不同的sigmoid函数,从而逼近不同的蓝色线

所以上述的红色线可以通过以下公式逼近:

单个特征推广至多个特征

改写机器学习的每一步

1、函数式子转矩阵

上述多个特征的式子可以转成用矩阵的方式表示

上述已经知道r表示什么,再用a表示sigmoid®

所以最终式子y可以转成向量的表示方式如下所示

总结:

transpose:矩阵转置

重新定义一下未知参数

2、重定义Loss函数

3、优化

优化步骤没什么区别,还是用梯度下降,唯一就是参数变了,本质上还是前面w,b两个参数的时候情况是一样的

为什么要分一个个Batch?

下次课解释

数据、BatchSize、epoch、update之间的关系如下:

拓展------模型变型

模型不一定是要用sigmoid,也可以用其他的模型,比如ReLu


上述函数统称为激活函数(activation function)

神经网络 OR 深度学习

Neuron:神经元

Neuron Network:神经网络

由于这个名字被搞臭了,所以换了个名字

layer:层

Deep Learning:深度学习

本质上是一个东西

为什么不把network变胖,而是将其变深???

过拟合

over fitting

相关推荐
名为沙丁鱼的猫72912 分钟前
【MCP 协议层(Protocol layer)详解】:深入分析MCP Python SDK中协议层的实现机制
人工智能·深度学习·神经网络·机器学习·自然语言处理·nlp
bylander15 分钟前
【AI学习】几分钟了解一下Clawdbot
人工智能·智能体·智能体应用
香芋Yu25 分钟前
【机器学习教程】第04章 指数族分布
人工智能·笔记·机器学习
小咖自动剪辑33 分钟前
Base64与图片互转工具增强版:一键编码/解码,支持多格式
人工智能·pdf·word·媒体
独自归家的兔35 分钟前
从 “局部凑活“ 到 “全局最优“:AI 规划能力的技术突破与产业落地实践
大数据·人工智能
一个处女座的程序猿36 分钟前
AI:解读Sam Altman与多位 AI 构建者对话—构建可落地的 AI—剖析 OpenAI Town Hall 与给创业者、产品/工程/安全团队的实用指南
人工智能
依依yyy36 分钟前
沪深300指数收益率波动性分析与预测——基于ARMA-GARCH模型
人工智能·算法·机器学习
海域云-罗鹏1 小时前
国内公司与英国总部数据中心/ERP系统互连,SD-WAN专线实操指南
大数据·数据库·人工智能
冬奇Lab1 小时前
深入理解 Claude Code:架构、上下文与工具系统
人工智能·ai编程
Up九五小庞1 小时前
本地部署 + Docker 容器化实战:中医舌诊 AI 项目 TongueDiagnosis 部署全记录-九五小庞
人工智能