李宏毅深度学习01——基本概念简介

视频链接

基本概念

Regression(回归):

类似于填空

Classification(分类):

类似于选择

Structure Learning(机器学习):

??

机器学习找对应函数的步骤

1、写出一个带有未知参数的函数

Model(模型):一个函数,比如y = b + w * x1(y是要预测的,x1是已知的)

weight(权重):上述中的w就是权重

bias(偏移):上述中的b就是偏移

2、定义训练数据的损失函数

loss(损失函数):一个函数,输入是模型中的参数 L(b, w),输出的值代表这组b,w好还是不好,值越大,代表b,w越不好

MAE(mean absolute error): 均值绝对误差

MSE(mean square error): 均值方差

Cross-entropy:如果预测值和实际值都是随机分布的,则使用这种方式查看损失值

label(真实值):真实的值,类似于训练数据

Error surface(误差面):等高线图

3、Optimization(优化)

找一个w和b,使得Loss结果最小

Gradient Descent(梯度下降)


Learning rate:学习速率 n

hyper parameters:超参数 自己设定

local minima局部最优

global minima全局最优

梯度下降有个问题就是容易导致局部最优?其实局部最优是一个假问题!

上述说的只是一个参数的情况,实际上多个参数也是一样的做法

由线性模型推广至非线性模型

前面的步骤统称训练,实际上都是基于已知数据进行的,我们的目的是要通过这个式子预测新的数据


为此,我们应该修改模型,以7天为一个周期来预测

linear models:线性模型,下面如图,就是考虑不同周期对应的线性模型

model bias:模型偏移

与之前说的bias不一样,这里说的是模型本身的限制导致没办法模拟真实的情况

所以我们需要一个更复杂的有未知参数的函数来替代线性模型

piecewise linear curves:分段线性曲线

这里面哪怕红色线不是线性的,而是曲线的,我们也可以通过微分的方式,选取足够多的点将其看成是线性的

那蓝色线的函数该怎么写出来呢,有一个很出名的函数叫做sigmoid,虽然是曲线,但是很接近蓝色线

sigmoid:S型线段对应的函数

而蓝色线的函数我们一般将其称作hard sigmoid

通过调整c、b、w这三个值,我们可以得到不同的sigmoid函数,从而逼近不同的蓝色线

所以上述的红色线可以通过以下公式逼近:

单个特征推广至多个特征

改写机器学习的每一步

1、函数式子转矩阵

上述多个特征的式子可以转成用矩阵的方式表示

上述已经知道r表示什么,再用a表示sigmoid®

所以最终式子y可以转成向量的表示方式如下所示

总结:

transpose:矩阵转置

重新定义一下未知参数

2、重定义Loss函数

3、优化

优化步骤没什么区别,还是用梯度下降,唯一就是参数变了,本质上还是前面w,b两个参数的时候情况是一样的

为什么要分一个个Batch?

下次课解释

数据、BatchSize、epoch、update之间的关系如下:

拓展------模型变型

模型不一定是要用sigmoid,也可以用其他的模型,比如ReLu


上述函数统称为激活函数(activation function)

神经网络 OR 深度学习

Neuron:神经元

Neuron Network:神经网络

由于这个名字被搞臭了,所以换了个名字

layer:层

Deep Learning:深度学习

本质上是一个东西

为什么不把network变胖,而是将其变深???

过拟合

over fitting

相关推荐
DisonTangor9 小时前
【百度拥抱开源】介绍ERNIE-4.5-VL-28B-A3B-Thinking:多模态AI的重大突破
人工智能·百度·语言模型·开源·aigc
F_D_Z9 小时前
【解决办法】报错Found dtype Long but expected Float
人工智能·python
pen-ai9 小时前
【高级机器学习】 12. 强化学习,Q-learning, DQN
人工智能·机器学习
受之以蒙9 小时前
Rust ndarray 高性能计算:从元素操作到矩阵运算的优化实践
人工智能·笔记·rust
野生面壁者章北海9 小时前
NeurIPS 2024|大语言模型高保真文本水印新范式
人工智能·语言模型·自然语言处理
KG_LLM图谱增强大模型9 小时前
如何利用大语言模型(LLM)实现自动标注与内容增强
人工智能·知识管理·内容管理·本体论·图谱增强大模型·自动标签·大模型内容标注
数据与后端架构提升之路10 小时前
小鹏VLA 2.0的“神秘涌现”:从痛苦到突破,自动驾驶与机器人如何突然“开窍”?
人工智能·机器人·自动驾驶
fruge10 小时前
CANN核心特性深度解析:简化AI开发的技术优势
人工智能
沛沛老爹10 小时前
AI入门知识之RAFT方法:基于微调的RAG优化技术详解
人工智能·llm·sft·raft·rag
zskj_zhyl10 小时前
科技助老与智慧养老的国家级政策与地方实践探索
大数据·人工智能·科技