李宏毅深度学习01——基本概念简介

视频链接

基本概念

Regression(回归):

类似于填空

Classification(分类):

类似于选择

Structure Learning(机器学习):

??

机器学习找对应函数的步骤

1、写出一个带有未知参数的函数

Model(模型):一个函数,比如y = b + w * x1(y是要预测的,x1是已知的)

weight(权重):上述中的w就是权重

bias(偏移):上述中的b就是偏移

2、定义训练数据的损失函数

loss(损失函数):一个函数,输入是模型中的参数 L(b, w),输出的值代表这组b,w好还是不好,值越大,代表b,w越不好

MAE(mean absolute error): 均值绝对误差

MSE(mean square error): 均值方差

Cross-entropy:如果预测值和实际值都是随机分布的,则使用这种方式查看损失值

label(真实值):真实的值,类似于训练数据

Error surface(误差面):等高线图

3、Optimization(优化)

找一个w和b,使得Loss结果最小

Gradient Descent(梯度下降)


Learning rate:学习速率 n

hyper parameters:超参数 自己设定

local minima局部最优

global minima全局最优

梯度下降有个问题就是容易导致局部最优?其实局部最优是一个假问题!

上述说的只是一个参数的情况,实际上多个参数也是一样的做法

由线性模型推广至非线性模型

前面的步骤统称训练,实际上都是基于已知数据进行的,我们的目的是要通过这个式子预测新的数据


为此,我们应该修改模型,以7天为一个周期来预测

linear models:线性模型,下面如图,就是考虑不同周期对应的线性模型

model bias:模型偏移

与之前说的bias不一样,这里说的是模型本身的限制导致没办法模拟真实的情况

所以我们需要一个更复杂的有未知参数的函数来替代线性模型

piecewise linear curves:分段线性曲线

这里面哪怕红色线不是线性的,而是曲线的,我们也可以通过微分的方式,选取足够多的点将其看成是线性的

那蓝色线的函数该怎么写出来呢,有一个很出名的函数叫做sigmoid,虽然是曲线,但是很接近蓝色线

sigmoid:S型线段对应的函数

而蓝色线的函数我们一般将其称作hard sigmoid

通过调整c、b、w这三个值,我们可以得到不同的sigmoid函数,从而逼近不同的蓝色线

所以上述的红色线可以通过以下公式逼近:

单个特征推广至多个特征

改写机器学习的每一步

1、函数式子转矩阵

上述多个特征的式子可以转成用矩阵的方式表示

上述已经知道r表示什么,再用a表示sigmoid®

所以最终式子y可以转成向量的表示方式如下所示

总结:

transpose:矩阵转置

重新定义一下未知参数

2、重定义Loss函数

3、优化

优化步骤没什么区别,还是用梯度下降,唯一就是参数变了,本质上还是前面w,b两个参数的时候情况是一样的

为什么要分一个个Batch?

下次课解释

数据、BatchSize、epoch、update之间的关系如下:

拓展------模型变型

模型不一定是要用sigmoid,也可以用其他的模型,比如ReLu


上述函数统称为激活函数(activation function)

神经网络 OR 深度学习

Neuron:神经元

Neuron Network:神经网络

由于这个名字被搞臭了,所以换了个名字

layer:层

Deep Learning:深度学习

本质上是一个东西

为什么不把network变胖,而是将其变深???

过拟合

over fitting

相关推荐
飞哥数智坊7 小时前
GPT-5-Codex 发布,Codex 正在取代 Claude
人工智能·ai编程
倔强青铜三7 小时前
苦练Python第46天:文件写入与上下文管理器
人工智能·python·面试
虫无涯8 小时前
Dify Agent + AntV 实战:从 0 到 1 打造数据可视化解决方案
人工智能
Dm_dotnet10 小时前
公益站Agent Router注册送200刀额度竟然是真的
人工智能
算家计算10 小时前
7B参数拿下30个世界第一!Hunyuan-MT-7B本地部署教程:腾讯混元开源业界首个翻译集成模型
人工智能·开源
机器之心10 小时前
LLM开源2.0大洗牌:60个出局,39个上桌,AI Coding疯魔,TensorFlow已死
人工智能·openai
Juchecar11 小时前
交叉熵:深度学习中最常用的损失函数
人工智能
林木森ai11 小时前
爆款AI动物运动会视频,用Coze(扣子)一键搞定全流程(附保姆级拆解)
人工智能·aigc
聚客AI12 小时前
🙋‍♀️Transformer训练与推理全流程:从输入处理到输出生成
人工智能·算法·llm
BeerBear13 小时前
【保姆级教程-从0开始开发MCP服务器】一、MCP学习压根没有你想象得那么难!.md
人工智能·mcp