【StableDiffusion】Embedding 底层原理,Prompt Embedding,嵌入向量

Embedding 是什么?

Embedding 是将自然语言词汇,映射为 固定长度 的词向量 的技术

· 说到这里,需要介绍一下 One-Hot 编码 是什么。

· One-Hot 编码 使用了众多 5000 长度的1维矩阵,每个矩阵代表一个词语。

· 这有坏处,它不仅计算量更大,而且,它是 不可移植的,因为每个词汇表中,每个 One-Hot 矩阵对应的 prompt 都不同。

· Embedding 能够将 One-Hot 编码的高维稀疏向量(矩阵) 转化为 低维连续的向量(矩阵),请看下面的例子

来看看,降维算法能够将这些被 Embedding 转化了的向量在 2维 坐标系上展现成什么样:

很明显,意思越是不相同的词语,他们的向量距离在二维平面上也相距越远

越是意思相近的词语(cat,猫;kitten,小猫),它们的向量在二维平面上的距离越近

而且,有语义关联的一些词语,它们的向量也是有特殊的数学关系的:

Embedding 将 text → vector 的具体过程

1.首先对句子进行处理,将句子切成单独的词语

2.被切的词语以 One-Hot 的编码格式存储

3.让代表你的词语的 One-Hot 编码的矩阵 和 嵌入矩阵(图中的矩阵E) 相乘,得到这句话的嵌入向量。

请注意,"嵌入矩阵"是提前被训练好的,也就是 Embedding 处理器 的本体。

在相乘之后,我们的自然语言句子的向量就从 4x5000的矩阵 → 4x128的矩阵

也就是,从 高维稀疏矩阵 → 低维稠密矩阵

这就是 Embedding 的作用机制!

相关推荐
John_ToDebug3 小时前
大模型提示词(Prompt)终极指南:从原理到实战,让AI输出质量提升300%
人工智能·chatgpt·prompt
猫头虎6 小时前
猫头虎AI分享|一款Coze、Dify类开源AI应用超级智能体快速构建工具:FastbuildAI
人工智能·开源·prompt·github·aigc·ai编程·ai-native
sinat_2869451919 小时前
AI应用安全 - Prompt注入攻击
人工智能·安全·prompt
居7然2 天前
解锁AI大模型:Prompt工程全面解析
人工智能·prompt·提示词
Jinkxs3 天前
Prompt Engineering+AI工具链:打造个人专属的智能开发助手
人工智能·prompt
爱分享的飘哥4 天前
第六十六篇:AI模型的“口才”教练:Prompt构造策略与自动化实践
人工智能·自动化·prompt·aigc·数据集·llm训练·数据工程
编码小袁4 天前
Prompt工程师基础技术学习指南:从入门到实战
prompt
zhurui_xiaozhuzaizai4 天前
OpenAI官方写的GPT-5 prompt指南
gpt·prompt
sssammmm5 天前
AI入门学习--如何写好prompt?
人工智能·学习·prompt
真就死难6 天前
适用于个人开发、中小型项目的Embedding方案(配合ChromaDB)
python·embedding·rag