【StableDiffusion】Embedding 底层原理,Prompt Embedding,嵌入向量

Embedding 是什么?

Embedding 是将自然语言词汇,映射为 固定长度 的词向量 的技术

· 说到这里,需要介绍一下 One-Hot 编码 是什么。

· One-Hot 编码 使用了众多 5000 长度的1维矩阵,每个矩阵代表一个词语。

· 这有坏处,它不仅计算量更大,而且,它是 不可移植的,因为每个词汇表中,每个 One-Hot 矩阵对应的 prompt 都不同。

· Embedding 能够将 One-Hot 编码的高维稀疏向量(矩阵) 转化为 低维连续的向量(矩阵),请看下面的例子

来看看,降维算法能够将这些被 Embedding 转化了的向量在 2维 坐标系上展现成什么样:

很明显,意思越是不相同的词语,他们的向量距离在二维平面上也相距越远

越是意思相近的词语(cat,猫;kitten,小猫),它们的向量在二维平面上的距离越近

而且,有语义关联的一些词语,它们的向量也是有特殊的数学关系的:

Embedding 将 text → vector 的具体过程

1.首先对句子进行处理,将句子切成单独的词语

2.被切的词语以 One-Hot 的编码格式存储

3.让代表你的词语的 One-Hot 编码的矩阵 和 嵌入矩阵(图中的矩阵E) 相乘,得到这句话的嵌入向量。

请注意,"嵌入矩阵"是提前被训练好的,也就是 Embedding 处理器 的本体。

在相乘之后,我们的自然语言句子的向量就从 4x5000的矩阵 → 4x128的矩阵

也就是,从 高维稀疏矩阵 → 低维稠密矩阵

这就是 Embedding 的作用机制!

相关推荐
移幻漂流1 天前
如何与大模型高效交互:Prompt工程与结构化数据返回的艺术
prompt·交互
Tony Bai1 天前
从“手搓 Prompt”到“无限循环”:AI 编码的下一个形态是“Ralph”吗?
人工智能·prompt
一见2 天前
AI编程中的Skill、Rule、Prompt和知识库Kb定位的区别
prompt·ai编程
zhangfeng11332 天前
PowerShell 中不支持激活你选中的 Python 虚拟环境,建议切换到命令提示符(Command Prompt)
开发语言·python·prompt
路人与大师2 天前
[深度架构] 拒绝 Prompt 爆炸:LLM Skills 的数学本质与“上下文压缩”工程论
android·架构·prompt
代码or搬砖2 天前
Prompt(提示词工程)
人工智能·python·prompt
云雾J视界2 天前
从“记忆外包”到“认知协作”:Prompt工程师如何设计人机知识工作流
python·flask·prompt·azure·分布式记忆·知识工作流
Mark_Aussie2 天前
Prompt 提示词精进
prompt
a187927218312 天前
【教程】AI 辅助单元测试:从 Prompt 到 Agent 的技术演进
ai·prompt·agent·ai编程·mcp·subagent·skills
程序员泠零澪回家种桔子3 天前
RAG中的Embedding技术
人工智能·后端·ai·embedding