【StableDiffusion】Embedding 底层原理,Prompt Embedding,嵌入向量

Embedding 是什么?

Embedding 是将自然语言词汇,映射为 固定长度 的词向量 的技术

· 说到这里,需要介绍一下 One-Hot 编码 是什么。

· One-Hot 编码 使用了众多 5000 长度的1维矩阵,每个矩阵代表一个词语。

· 这有坏处,它不仅计算量更大,而且,它是 不可移植的,因为每个词汇表中,每个 One-Hot 矩阵对应的 prompt 都不同。

· Embedding 能够将 One-Hot 编码的高维稀疏向量(矩阵) 转化为 低维连续的向量(矩阵),请看下面的例子

来看看,降维算法能够将这些被 Embedding 转化了的向量在 2维 坐标系上展现成什么样:

很明显,意思越是不相同的词语,他们的向量距离在二维平面上也相距越远

越是意思相近的词语(cat,猫;kitten,小猫),它们的向量在二维平面上的距离越近

而且,有语义关联的一些词语,它们的向量也是有特殊的数学关系的:

Embedding 将 text → vector 的具体过程

1.首先对句子进行处理,将句子切成单独的词语

2.被切的词语以 One-Hot 的编码格式存储

3.让代表你的词语的 One-Hot 编码的矩阵 和 嵌入矩阵(图中的矩阵E) 相乘,得到这句话的嵌入向量。

请注意,"嵌入矩阵"是提前被训练好的,也就是 Embedding 处理器 的本体。

在相乘之后,我们的自然语言句子的向量就从 4x5000的矩阵 → 4x128的矩阵

也就是,从 高维稀疏矩阵 → 低维稠密矩阵

这就是 Embedding 的作用机制!

相关推荐
oil欧哟1 小时前
文心 5.0 来了,百度大模型的破局之战
前端·人工智能·百度·prompt
学Linux的语莫3 小时前
Prompt 提示词工程
prompt
大千AI助手1 天前
PPT: Pre-trained Prompt Tuning - 预训练提示调优详解
人工智能·神经网络·llm·prompt·ppt·大千ai助手·预训练提示调优
weixin_459036671 天前
【Prompt】提示词工程
prompt
我要学脑机2 天前
prompt[ai开发项目指示]
人工智能·prompt
“负拾捌”2 天前
LangChain 中 ChatPromptTemplate 的几种使用方式
python·langchain·prompt
一 铭2 天前
Claude Agent Skills:一种基于 Prompt 扩展的元工具架构
人工智能·大模型·llm·prompt
CV视觉2 天前
AI 实战篇:用 LangGraph 串联 RAG+MCP Server,打造能直接操控 Jira 的智能体
人工智能·深度学习·机器学习·自然语言处理·langchain·prompt·jira
海底的星星fly3 天前
【Prompt学习技能树地图】生成知识提示技术的深度解析与应用
人工智能·学习·prompt
“负拾捌”3 天前
LangChain提示词模版 PromptTemplate
python·langchain·prompt