spark MLlib (DataFrame-based) 中的聚类算法Bisecting K-Means、K-Means、Gaussian Mixture

Bisecting K-Means

核心原理:

Bisecting K-Means 是一种层次 K-Means 聚类算法,基于 Steinbach、Karypis 和 Kumar 的论文《A comparison of document clustering techniques》,并对 Spark 环境进行了修改和适应。

该算法通过递归地将数据集分割为二叉树结构的子集群来执行聚类。开始时,整个数据集视为单个聚类,然后通过以下步骤逐步分割:

  1. 选择当前具有最大 SSE(Sum of Squared Errors)的聚类进行分割。
  2. 在选定的聚类中执行 K-Means 聚类,根据距离选择最佳的分割点。
    这种分割方法不断重复,直到达到预定的聚类数量或无法进一步分割。
    数学表达式:
    对于 Bisecting K-Means,其核心是基于 K-Means 的分割操作,数学表达式如下所示:
    C = arg ⁡ min ⁡ C ∑ i = 1 k ∑ x ∈ C i ∥ x − μ i ∥ 2 \mathbf{C} = \arg \min_{C} \sum_{i=1}^{k} \sum_{\mathbf{x} \in C_i} \|\mathbf{x} - \mathbf{\mu}_i\|^2 C=argCmini=1∑kx∈Ci∑∥x−μi∥2
    其中:
  • ( C ) ( \mathbf{C} ) (C) 表示聚类结果,包含 ( k ) ( k ) (k) 个聚类 ( C i ) ( C_i ) (Ci)。
  • ( x ) ( \mathbf{x} ) (x) 是数据点。
  • ( μ i ) ( \mathbf{\mu}_i ) (μi) 是第 ( i ) ( i ) (i) 个聚类 ( C i ) ( C_i ) (Ci) 的中心点。

K-Means

核心原理:

K-Means 是一种经典的聚类算法,通过最小化每个聚类中所有数据点与其所属聚类中心点之间的平方距离的总和来进行聚类。

该算法的步骤如下:

  1. 初始化 :随机初始化 ( k ) ( k ) (k) 个聚类中心点。
  2. 迭代优化
    • 将每个数据点分配到最近的聚类中心。
    • 更新每个聚类中心为其分配的所有数据点的平均值。
    • 重复以上两步,直到收敛(即聚类中心不再变化或变化很小)。
      数学表达式:
      K-Means 的优化目标是最小化以下损失函数:
      C = arg ⁡ min ⁡ C ∑ i = 1 k ∑ x ∈ C i ∥ x − μ i ∥ 2 \mathbf{C} = \arg \min_{C} \sum_{i=1}^{k} \sum_{\mathbf{x} \in C_i} \|\mathbf{x} - \mathbf{\mu}_i\|^2 C=argCmini=1∑kx∈Ci∑∥x−μi∥2
      其中:
  • ( C ) ( \mathbf{C} ) (C) 表示聚类结果,包含 ( k ) ( k ) (k) 个聚类 ( C i ) ( C_i ) (Ci)。
  • ( x ) ( \mathbf{x} ) (x) 是数据点。
  • ( μ i ) ( \mathbf{\mu}_i ) (μi) 是第 ( i ) ( i ) (i) 个聚类 ( C i ) ( C_i ) (Ci) 的中心点。

Gaussian Mixture

核心原理:

高斯混合模型(Gaussian Mixture Model,GMM)是一种概率模型,假设数据是由多个高斯分布组成的混合体。每个高斯分布代表一个聚类,数据点是从这些高斯分布中生成的。

GMM 通过最大化似然函数来估计模型参数,即数据点出现的概率:
Θ = arg ⁡ max ⁡ Θ ∑ i = 1 n log ⁡ ( ∑ j = 1 k π j N ( x i ∣ μ j , Σ j ) ) \mathbf{\Theta} = \arg \max_{\Theta} \sum_{i=1}^{n} \log \left( \sum_{j=1}^{k} \pi_j \mathcal{N}(\mathbf{x}_i | \mathbf{\mu}_j, \mathbf{\Sigma}_j) \right) Θ=argΘmaxi=1∑nlog(j=1∑kπjN(xi∣μj,Σj))

其中:

  • ( Θ ) ( \mathbf{\Theta} ) (Θ) 是 GMM 的参数集合,包括每个高斯分布的均值 ( μ j ) ( \mathbf{\mu}_j ) (μj)、协方差矩阵 ( Σ j ) ( \mathbf{\Sigma}_j ) (Σj) 和混合系数 ( π j ) ( \pi_j ) (πj)。
  • ( x i ) ( \mathbf{x}_i ) (xi) 是数据点。
  • ( N ( x ∣ μ j , Σ j ) ) ( \mathcal{N}(\mathbf{x} | \mathbf{\mu}_j, \mathbf{\Sigma}_j) ) (N(x∣μj,Σj)) 是第 ( j ) ( j ) (j) 个高斯分布的概率密度函数。
    这些算法分别用于不同的数据特性和应用场景,可以根据数据的特征选择合适的聚类算法。
相关推荐
多米Domi0118 分钟前
0x3f 第25天 黑马web (145-167)hot100链表
数据结构·python·算法·leetcode·链表
LYFlied8 分钟前
【每日算法】LeetCode 207. 课程表
算法·leetcode·职场和发展
sali-tec10 分钟前
C# 基于OpenCv的视觉工作流-章7-膨胀
图像处理·人工智能·opencv·算法·计算机视觉
叫我:松哥13 分钟前
基于机器学习的地震风险评估与可视化系统,采用Flask后端与Bootstrap前端,系统集成DBSCAN空间聚类算法与随机森林算法
前端·算法·机器学习·flask·bootstrap·echarts·聚类
一起养小猫15 分钟前
LeetCode100天Day12-删除重复项与删除重复项II
java·数据结构·算法·leetcode
小O的算法实验室21 分钟前
2023年IEEE TITS SCI2区TOP,增强遗传算法+分布式随机多无人机协同区域搜索路径规划,深度解析+性能实测
算法·论文复现·智能算法·智能算法改进
Allen_LVyingbo28 分钟前
病历生成与质控编码的工程化范式研究:从模型驱动到系统治理的范式转变
前端·javascript·算法·前端框架·知识图谱·健康医疗·easyui
一起努力啊~28 分钟前
算法刷题--螺旋矩阵II+区间和+开发商购买土地
数据结构·算法·leetcode
Swift社区29 分钟前
LeetCode 470 用 Rand7() 实现 Rand10()
算法·leetcode·职场和发展
麦麦大数据30 分钟前
F052pro 基于spark推荐的中医古籍知识图谱可视化推荐系统|spark mlib|hadoop|docker集群
docker·spark-ml·spark·知识图谱·可是还·中医推荐·ehcarts