LeetCode //C - 174. Dungeon Game

174. Dungeon Game

The demons had captured the princess and imprisoned her in the bottom-right corner of a dungeon. The dungeon consists of m x n rooms laid out in a 2D grid. Our valiant knight was initially positioned in the top-left room and must fight his way through dungeon to rescue the princess.

The knight has an initial health point represented by a positive integer. If at any point his health point drops to 0 or below, he dies immediately.

Some of the rooms are guarded by demons (represented by negative integers), so the knight loses health upon entering these rooms; other rooms are either empty (represented as 0) or contain magic orbs that increase the knight's health (represented by positive integers).

To reach the princess as quickly as possible, the knight decides to move only rightward or downward in each step.

Return the knight's minimum initial health so that he can rescue the princess.

Note that any room can contain threats or power-ups, even the first room the knight enters and the bottom-right room where the princess is imprisoned.

Example 1:

Input: dungeon = [[-2,-3,3],[-5,-10,1],[10,30,-5]]
Output: 7
Explanation: The initial health of the knight must be at least 7 if he follows the optimal path: RIGHT-> RIGHT -> DOWN -> DOWN.

Example 2:

Input: dungeon = [[0]]
Output: 1

Constraints:
  • m == dungeon.length
  • n == dungeon[i].length
  • 1 <= m, n <= 200
  • -1000 <= dungeon[i][j] <= 1000

From: LeetCode

Link: 174. Dungeon Game


Solution:

Ideas:

1. Dynamic Programming Table (DP Table):

  • Create a 2D array dp where dp[i][j] stores the minimum initial health required to reach the princess starting from cell (i, j).

2. Base Case Initialization:

  • For the princess's cell (m-1, n-1), set dp[m-1][n-1] to the maximum of 1 and 1 - dungeon[m-1][n-1].

3. Filling the DP Table:

  • Last Column: Calculate minimum health for each cell in the last column based on the cell below it.
  • Last Row: Calculate minimum health for each cell in the last row based on the cell to the right.
  • Other Cells: For each cell (i, j), compute the minimum health based on the minimum of the right and below cells, adjusted by the current cell's value. If the resulting health is less than or equal to 0, set it to 1.

4. Result:

  • The value in dp[0][0] represents the minimum initial health required for the knight to rescue the princess starting from the top-left corner.
Code:
c 复制代码
int calculateMinimumHP(int** dungeon, int dungeonSize, int* dungeonColSize) {
    int m = dungeonSize;
    int n = dungeonColSize[0];
    int dp[m][n];
    
    dp[m-1][n-1] = dungeon[m-1][n-1] > 0 ? 1 : 1 - dungeon[m-1][n-1];
    
    for (int i = m - 2; i >= 0; i--) {
        dp[i][n-1] = dp[i+1][n-1] - dungeon[i][n-1];
        if (dp[i][n-1] <= 0) dp[i][n-1] = 1;
    }
    
    for (int j = n - 2; j >= 0; j--) {
        dp[m-1][j] = dp[m-1][j+1] - dungeon[m-1][j];
        if (dp[m-1][j] <= 0) dp[m-1][j] = 1;
    }
    
    for (int i = m - 2; i >= 0; i--) {
        for (int j = n - 2; j >= 0; j--) {
            int min_health_on_exit = dp[i+1][j] < dp[i][j+1] ? dp[i+1][j] : dp[i][j+1];
            dp[i][j] = min_health_on_exit - dungeon[i][j];
            if (dp[i][j] <= 0) dp[i][j] = 1;
        }
    }
    
    return dp[0][0];
}
相关推荐
CoovallyAIHub5 分钟前
一夜之间,大模型处理长文本的难题被DeepSeek新模型彻底颠覆!
深度学习·算法·计算机视觉
天选之女wow10 分钟前
【代码随想录算法训练营——Day43(Day42周日休息)】动态规划——300.最长递增子序列、674.最长连续递增序列、718.最长重复子数组
算法·leetcode·动态规划
敲代码的嘎仔39 分钟前
JavaWeb零基础学习Day4——Maven
java·开发语言·学习·算法·maven·javaweb·学习方法
聪明的笨猪猪1 小时前
hot 100 (1)—— 两数之和(哈希)
java·经验分享·算法·哈希算法
_dindong1 小时前
牛客101:链表
数据结构·c++·笔记·学习·算法·链表
wuk9982 小时前
基于位置式PID算法调节PWM占空比实现电机转速控制
单片机·嵌入式硬件·算法
派大星爱吃猫2 小时前
堆的概念、结构与应用详解
c语言·数据结构·
不到满级不改名2 小时前
EM算法 & 隐马尔可夫模型
算法
workflower6 小时前
单元测试-例子
java·开发语言·算法·django·个人开发·结对编程
MicroTech20258 小时前
微算法科技(MLGO)研发突破性低复杂度CFG算法,成功缓解边缘分裂学习中的掉队者问题
科技·学习·算法