大家好,我是阿赵。
在UI上面显示粒子特效,如果把粒子系统直接拖到Canvas里面,会存在很多问题,比如层级问题、裁剪问题等。这里分享一种用MaskableGraphic和UIVertex来显示粒子特效的方法。
一、 MaskableGraphic和UIVertex简单显示原理
1、简单例子
在介绍MaskableGraphic和UIVertex是什么之前,先来运行一段代码:
bash
using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using UnityEngine.UI;
[RequireComponent(typeof(CanvasRenderer))]
[RequireComponent(typeof(RectTransform))]
public class UIVertexTest : MaskableGraphic
{
private UIVertex[] _quad = new UIVertex[4];
// Start is called before the first frame update
private new IEnumerator Start()
{
_quad[0] = UIVertex.simpleVert;
_quad[0].color = Color.green;
_quad[0].uv0 = new Vector2(0, 0);
_quad[0].position = new Vector3(-100, 0);
_quad[1] = UIVertex.simpleVert;
_quad[1].color = Color.red;
_quad[1].uv0 = new Vector2(0, 1);
_quad[1].position = new Vector3(-100, 200);
_quad[2] = UIVertex.simpleVert;
_quad[2].color = Color.black;
_quad[2].uv0 = new Vector2(1, 1);
_quad[2].position = new Vector3(100, 200);
_quad[3] = UIVertex.simpleVert;
_quad[3].color = Color.blue;
_quad[3].uv0 = new Vector2(1, 0);
_quad[3].position = new Vector3(100, 0);
yield return null;
}
// Update is called once per frame
void Update()
{
}
protected override void OnPopulateMesh(VertexHelper vh)
{
vh.Clear();
vh.AddUIVertexQuad(_quad);
}
}
在Canvas里面新建一个空的GameObject,然后把脚本挂上去,运行,会得到这样的结果:
可以试试层叠或是用Mask做裁剪,发现都没有问题:
2、代码解释
这里用到了几个东西,是要说明一下的:
1. MaskableGraphic
可以留意到,上面的代码的类并不是继承MonoBehaviour,而是继承了MaskableGraphic。
MaskableGraphic 继承自 Graphic,并通过 RectMask2D 和 Mask 实现 "可遮罩的图形"。如果觉得复杂,可以简单这么理解,继承MaskableGraphic 的类,挂在Canvas下的对象上时, 这个对象会变成一个类似Image的对象,可以在上面绘制自己想要的东西。
继承了MaskableGraphic 之后,一般来说就会出现这些参数了,比如颜色、材质球、是否可以成为射线的目标、是否可遮罩等。是不是和Image很像?
2. UIVertex
在理解UIVertex之前,要先对Vertex有所了解。一个3D模型能显示出来,最基础需要2点:
(1) 顶点,比如一个三角形需要3个顶点,顶点包括一般包括坐标、颜色、UV坐标之类的信息。
(2) 索引,为什么三个点能构成一个三角形,是因为有索引,比如三个顶点1、2、3,组成了一个 三角形,那么如果是四个顶点1、2、3、4,可以组成2个三角形,可能是1、2、3一组,1、3、4一组。
这上面的顶点,就是Vertex了。那么UIVertex就很好理解了,它也是顶点,但只是用在UI上的顶点,更具体一点的,就是在MaskableGraphic这个"画纸"上面绘制图形的顶点。
具体看一下UIVertex这个类,里面包含的参数并不多,有顶点的位置、法线方向、切线方向、颜色,还有uv0-uv3这么4组UV坐标。
有了顶点信息,我们就可以自己绘制图形了。
3. OnPopulateMesh
这个方法是MaskableGraphic里面的方法,我们可以通过override重写它的逻辑。这个方法调用的时机是MaskableGraphic里面的顶点发生改变时,具体一点,比如OnEnable、需要重新生成顶点、改变顶点的颜色、改变MaskableGraphic使用的材质球,之类。
如果想在没有顶点改变的情况下也调用这个方法,可以通过调用SetAllDirty()方法,也会强制的执行OnPopulateMesh方法。
这个例子里面,由于我只是绘制一个矩形,也不需要修改,所以我并没有调用SetAllDirty方法,也就是说,除了在一开始的时候绘制了一次矩形,后面实际上这个方法是不会再次调用,除非我手动去修改颜色和材质球。
4. VertexHelper
作为OnPopulateMesh方法的传入参数VertexHelper是管理了当前MaskableGraphic 这张"画纸"上面的所有顶点。
看一下VertexHelper所提供的方法,可以看出,我们可以对MaskableGraphic 添加点、添加三角形、添加四边形、添加整个网格、清理等操作。
我这个例子,使用了AddUIVertexQuad方法,也就是添加一个四边形。一个四边形是由4个顶点组成2个三角形实现的。每次调用OnPopulateMesh方法的时候,需要先把VertexHelper调用Clear方法清空一下,再重新添加顶点或者三角形,不然会重复添加,越来越多。
二、 通过获取大小说明position的计算
上面的例子比较简单,赋予了四个顶点固定的UV坐标,不同的颜色,然后position是相对于GameObject自己的坐标的相对坐标,写死了宽度是-100到100,高度是0到200,所以整个矩形是往上偏的。
这次稍微做复杂一点点,我需要读取RectTransform里面的大小来改变四个顶点的位置,代码如下:
bash
using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using UnityEngine.UI;
[RequireComponent(typeof(CanvasRenderer))]
[RequireComponent(typeof(RectTransform))]
public class UIVertexTest : MaskableGraphic
{
private UIVertex[] _quad = new UIVertex[4];
// Start is called before the first frame update
private new IEnumerator Start()
{
UpdateQuad();
yield return null;
}
private void UpdateQuad()
{
Rect rect = gameObject.GetComponent<RectTransform>().rect;
_quad[0] = UIVertex.simpleVert;
_quad[0].color = Color.green;
_quad[0].uv0 = new Vector2(0, 0);
_quad[0].position = new Vector3(rect.center.x - rect.width / 2, rect.center.y - rect.height / 2, 0);
_quad[1] = UIVertex.simpleVert;
_quad[1].color = Color.red;
_quad[1].uv0 = new Vector2(0, 1);
_quad[1].position = new Vector3(rect.center.x - rect.width / 2, rect.center.y + rect.height / 2, 0);
_quad[2] = UIVertex.simpleVert;
_quad[2].color = Color.black;
_quad[2].uv0 = new Vector2(1, 1);
_quad[2].position = new Vector3(rect.center.x + rect.width / 2, rect.center.y + rect.height / 2, 0);
_quad[3] = UIVertex.simpleVert;
_quad[3].color = Color.blue;
_quad[3].uv0 = new Vector2(1, 0);
_quad[3].position = new Vector3(rect.center.x + rect.width / 2, rect.center.y - rect.height / 2, 0);
}
// Update is called once per frame
void Update()
{
}
protected override void OnPopulateMesh(VertexHelper vh)
{
vh.Clear();
UpdateQuad();
vh.AddUIVertexQuad(_quad);
}
}
现在改变RectTransform里面的宽高
可以看到绘制出来的矩形也跟着变化了。
这次的代码修改主要有:
- 把组装顶点的方法从start里面提取出来,封了一个UpdateQuad方法
- 通过获取RectTransform的rect,来计算顶点的实际位置。
三、 材质贴图的应用
只是显示顶点颜色有点单调,这次试试绘制图片。由于之前组建四个顶点的时候,就已经设置了uv0,这个uv0是根据顶点的位置设置了从0,0到1,1四个角的uv坐标,所以把图片赋予进去,按道理是可以直接把图片完整铺满整个矩形的。
这里需要注意,由于是绘制在UI上的图片,所以需要配合着UI类型的Shader才能正确显示。这里我写了一个最简单的显示图片采用的UI类shader:
直接把材质球拖进去就行:
图片就能正常显示了。
当然,一般我们不会这样拖材质球去使用,所以我在代码里面暴露一个材质球参数,用于修改材质球。
bash
public Material curMat;
然后在Update里面,调用一个CheckMatChange的方法,检查当前的MaskableGraphic的material如果不等于我指定的材质球,就会设置材质球。material是MaskableGraphic本身的变量,不需要额外声明的。
void Update()
{
CheckMatChange();
}
private void CheckMatChange()
{
if(material!=curMat)
{
material = curMat;
}
}
还有一个值得注意的地方是,我这里也没有调用SetAllDirty(),但只要修改材质球,就立刻生效了。这是因为,材质球改变,也是调用OnPopulateMesh方法的条件之一,所以不需要其他操作,单纯修改材质球,就已经会调用一次OnPopulateMesh了。
完整代码:
bash
using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using UnityEngine.UI;
[RequireComponent(typeof(CanvasRenderer))]
[RequireComponent(typeof(RectTransform))]
public class UIVertexTest : MaskableGraphic
{
private UIVertex[] _quad = new UIVertex[4];
public Material curMat;
// Start is called before the first frame update
private new IEnumerator Start()
{
UpdateQuad();
yield return null;
}
private void UpdateQuad()
{
Rect rect = gameObject.GetComponent<RectTransform>().rect;
_quad[0] = UIVertex.simpleVert;
_quad[0].color = Color.green;
_quad[0].uv0 = new Vector2(0, 0);
_quad[0].position = new Vector3(rect.center.x - rect.width / 2, rect.center.y - rect.height / 2, 0);
_quad[1] = UIVertex.simpleVert;
_quad[1].color = Color.red;
_quad[1].uv0 = new Vector2(0, 1);
_quad[1].position = new Vector3(rect.center.x - rect.width / 2, rect.center.y + rect.height / 2, 0);
_quad[2] = UIVertex.simpleVert;
_quad[2].color = Color.black;
_quad[2].uv0 = new Vector2(1, 1);
_quad[2].position = new Vector3(rect.center.x + rect.width / 2, rect.center.y + rect.height / 2, 0);
_quad[3] = UIVertex.simpleVert;
_quad[3].color = Color.blue;
_quad[3].uv0 = new Vector2(1, 0);
_quad[3].position = new Vector3(rect.center.x + rect.width / 2, rect.center.y - rect.height / 2, 0);
}
// Update is called once per frame
void Update()
{
CheckMatChange();
}
private void CheckMatChange()
{
if(material!=curMat)
{
material = curMat;
}
}
protected override void OnPopulateMesh(VertexHelper vh)
{
vh.Clear();
UpdateQuad();
vh.AddUIVertexQuad(_quad);
}
}
四、 模拟粒子
通过上面的说明,按道理应该大概了解了怎样通过UIVertex在MaskableGraphic上绘制图形了,接下来就进入主题:
1、 简单模拟粒子
先上代码:
bash
using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using UnityEngine.UI;
using static UnityEngine.ParticleSystem;
[RequireComponent(typeof(CanvasRenderer))]
[RequireComponent(typeof(RectTransform))]
public class UIVertexTest : MaskableGraphic
{
private UIVertex[] _quad = new UIVertex[4];
public Material curMat;
public ParticleSystem particleSys;
private ParticleSystemRenderer particleSysRender;
private ParticleSystem.MainModule mainModule;
private Particle[] particles;
// Start is called before the first frame update
private new IEnumerator Start()
{
if(particleSys == null)
{
particleSys = gameObject.GetComponent<ParticleSystem>();
if(particleSys!=null)
{
particleSysRender = particleSys.GetComponent<ParticleSystemRenderer>();
particleSysRender.enabled = false;
mainModule = particleSys.main;
}
}
yield return null;
}
private void UpdateQuad(ParticleSystem ps, Particle p)
{
Color curCol = p.GetCurrentColor(ps);
float size = p.GetCurrentSize(ps) * 0.5f;
Vector2 position = (mainModule.simulationSpace == ParticleSystemSimulationSpace.Local ? p.position : ps.transform.InverseTransformPoint(p.position));
float scale = canvas.gameObject.GetComponent<RectTransform>().localScale.x;
position /= scale;
size /= scale;
_quad[0] = UIVertex.simpleVert;
_quad[0].color = curCol;
_quad[0].uv0 = new Vector2(0, 0);
_quad[0].position = new Vector3(position.x - size, position.y - size);
_quad[1] = UIVertex.simpleVert;
_quad[1].color = curCol;
_quad[1].uv0 = new Vector2(0, 1);
_quad[1].position = new Vector3(position.x - size, position.y + size);
_quad[2] = UIVertex.simpleVert;
_quad[2].color = curCol;
_quad[2].uv0 = new Vector2(1, 1);
_quad[2].position = new Vector3(position.x + size, position.y + size);
_quad[3] = UIVertex.simpleVert;
_quad[3].color = curCol;
_quad[3].uv0 = new Vector2(1, 0);
_quad[3].position = new Vector3(position.x + size, position.y - size);
}
// Update is called once per frame
void Update()
{
CheckMatChange();
CheckParticle();
}
private void CheckMatChange()
{
if(material!=curMat)
{
material = curMat;
}
}
private void CheckParticle()
{
if (particleSys != null)
{
SetAllDirty();
}
}
protected override void OnPopulateMesh(VertexHelper vh)
{
vh.Clear();
if (particleSys == null)
{
return;
}
if(particles == null)
{
particles = new Particle[500];
}
int count = particleSys.GetParticles(particles);
if(count == 0)
{
return;
}
for(int i = 0;i<count;i++)
{
Particle p = particles[i];
UpdateQuad(particleSys, p);
vh.AddUIVertexQuad(_quad);
}
}
}
现在把一个简单的粒子系统放在Canvas下面,然后把脚本挂到粒子系统上。给它赋予一个UI类的shader。这时候运行,可以看到粒子系统上面的renderer是关闭状态的:
但UI上面却看到了粒子效果:
而且这个粒子可以裁剪、可以随意重叠:
接下来说一下原理:
- 从粒子系统里面,获取粒子的数量,然后做一个循环,每一个粒子绘制一个四边形,然后计算粒子的大小和位置。
- 为了怕绘制得太多,所以获取粒子的时候,数组最大值只设置了500:
particles = new Particle[500];
当然,这样做可能也不太好,因为如果粒子系统本身发射的粒子太多,只获取500个可能表现会有问题,所以在设计粒子的时候,可以在粒子系统上面设置一下粒子的最大发射数量,保证粒子在有限数量内,效果是正常的。 - 计算粒子四个顶点的位置
每个粒子的位置和当前大小是可以获得的,但位置需要乘以自身的Transform的逆矩阵来计算
bash
Vector2 position = (mainModule.simulationSpace == ParticleSystemSimulationSpace.Local ? p.position : ps.transform.InverseTransformPoint(p.position));
- 粒子的大小问题
由于粒子是放在Canvas里面的,所以实际上它是经过了Canvas的缩放的。所以需要获取Canvas的缩放,然后给计算的顶点做一个缩放
2、 模拟粒子高级效果
刚才的粒子模拟,是最基础的,每个粒子都是只计算了位移和缩放,没有计算旋转,还有,没有支持粒子系统本身的一些特殊效果,比如序列帧的播放功能。下面补全一下:
1. 考虑旋转
修改UpdateQuad方法,把position的设置放在最后面,判断一下旋转,并做一个偏移:
bash
private void UpdateQuad(ParticleSystem ps, Particle p)
{
Color curCol = p.GetCurrentColor(ps);
float size = p.GetCurrentSize(ps) * 0.5f;
float rotation = -p.rotation * Mathf.Deg2Rad;
float rotation90 = rotation + Mathf.PI / 2;
Vector2 position = (mainModule.simulationSpace == ParticleSystemSimulationSpace.Local ? p.position : ps.transform.InverseTransformPoint(p.position));
float scale = canvas.gameObject.GetComponent<RectTransform>().localScale.x;
position /= scale;
size /= scale;
_quad[0] = UIVertex.simpleVert;
_quad[0].color = curCol;
_quad[0].uv0 = new Vector2(0, 0);
_quad[1] = UIVertex.simpleVert;
_quad[1].color = curCol;
_quad[1].uv0 = new Vector2(0, 1);
_quad[2] = UIVertex.simpleVert;
_quad[2].color = curCol;
_quad[2].uv0 = new Vector2(1, 1);
_quad[3] = UIVertex.simpleVert;
_quad[3].color = curCol;
_quad[3].uv0 = new Vector2(1, 0);
if (rotation == 0)
{
Vector4 posOffset = new Vector4();
posOffset.x = position.x - size;
posOffset.y = position.y - size;
posOffset.z = position.x + size;
posOffset.w = position.y + size;
_quad[0].position = new Vector3(posOffset.x,posOffset.y);
_quad[1].position = new Vector3(posOffset.x, posOffset.w);
_quad[2].position = new Vector3(posOffset.z, posOffset.w);
_quad[3].position = new Vector3(posOffset.z, posOffset.y);
}
else
{
Vector2 right = new Vector2(Mathf.Cos(rotation), Mathf.Sin(rotation)) * size;
Vector2 up = new Vector2(Mathf.Cos(rotation90), Mathf.Sin(rotation90)) * size;
_quad[0].position = position - right - up;
_quad[1].position = position - right + up;
_quad[2].position = position + right + up;
_quad[3].position = position + right - up;
}
}
2. 考虑序列帧动画
粒子系统本身自带播放序列帧的功能的,比如我做了这么一张序列帧图:
然后在Texture Sheet Animation里面指定一下横竖列的格子数量,按道理粒子系统就会从1到16那样按顺序播放序列帧动画:
在代码里面,要这样模拟:
bash
private void UpdateQuad(ParticleSystem ps, Particle p)
{
Color curCol = p.GetCurrentColor(ps);
float size = p.GetCurrentSize(ps) * 0.5f;
float rotation = -p.rotation * Mathf.Deg2Rad;
float rotation90 = rotation + Mathf.PI / 2;
Vector2 position = (mainModule.simulationSpace == ParticleSystemSimulationSpace.Local ? p.position : ps.transform.InverseTransformPoint(p.position));
float scale = canvas.gameObject.GetComponent<RectTransform>().localScale.x;
position /= scale;
size /= scale;
Vector4 particleUV = imageUV;
//计算序列帧动画每一个粒子的uv
if(ps.textureSheetAnimation.enabled == true)
{
TextureSheetAnimationModule textureSheetAnimation = ps.textureSheetAnimation;
float frameProgress = 1 - (p.remainingLifetime / p.startLifetime);
if (textureSheetAnimation.frameOverTime.curveMin != null)
{
frameProgress = textureSheetAnimation.frameOverTime.curveMin.Evaluate(1 - (p.remainingLifetime / p.startLifetime));
}
else if (textureSheetAnimation.frameOverTime.curve != null)
{
frameProgress = textureSheetAnimation.frameOverTime.curve.Evaluate(1 - (p.remainingLifetime / p.startLifetime));
}
else if (textureSheetAnimation.frameOverTime.constant > 0)
{
frameProgress = textureSheetAnimation.frameOverTime.constant - (p.remainingLifetime / p.startLifetime);
}
frameProgress = Mathf.Repeat(frameProgress * textureSheetAnimation.cycleCount, 1);
int frame = 0;
int textureSheetAnimationFrames = textureSheetAnimation.numTilesX * textureSheetAnimation.numTilesY;
Vector2 textureSheetAnimationFrameSize = new Vector2(1f / textureSheetAnimation.numTilesX, 1f / textureSheetAnimation.numTilesY);
switch (textureSheetAnimation.animation)
{
case ParticleSystemAnimationType.WholeSheet:
frame = Mathf.FloorToInt(frameProgress * textureSheetAnimationFrames);
break;
case ParticleSystemAnimationType.SingleRow:
frame = Mathf.FloorToInt(frameProgress * textureSheetAnimation.numTilesX);
int row = textureSheetAnimation.rowIndex;
// if (textureSheetAnimation.useRandomRow) { // FIXME - is this handled internally by rowIndex?
// row = Random.Range(0, textureSheetAnimation.numTilesY, using: particle.randomSeed);
// }
frame += row * textureSheetAnimation.numTilesX;
break;
}
frame %= textureSheetAnimationFrames;
particleUV.x = (frame % textureSheetAnimation.numTilesX) * textureSheetAnimationFrameSize.x;
particleUV.y = 1-Mathf.FloorToInt(frame / textureSheetAnimation.numTilesX) * textureSheetAnimationFrameSize.y- textureSheetAnimationFrameSize.y;
particleUV.z = particleUV.x + textureSheetAnimationFrameSize.x;
particleUV.w = particleUV.y + textureSheetAnimationFrameSize.y;
}
_quad[0] = UIVertex.simpleVert;
_quad[0].color = curCol;
_quad[0].uv0 = new Vector2(particleUV.x, particleUV.y);
_quad[1] = UIVertex.simpleVert;
_quad[1].color = curCol;
_quad[1].uv0 = new Vector2(particleUV.x, particleUV.w);
_quad[2] = UIVertex.simpleVert;
_quad[2].color = curCol;
_quad[2].uv0 = new Vector2(particleUV.z, particleUV.w);
_quad[3] = UIVertex.simpleVert;
_quad[3].color = curCol;
_quad[3].uv0 = new Vector2(particleUV.z, particleUV.y);
if (rotation == 0)
{
Vector4 posOffset = new Vector4();
posOffset.x = position.x - size;
posOffset.y = position.y - size;
posOffset.z = position.x + size;
posOffset.w = position.y + size;
_quad[0].position = new Vector3(posOffset.x,posOffset.y);
_quad[1].position = new Vector3(posOffset.x, posOffset.w);
_quad[2].position = new Vector3(posOffset.z, posOffset.w);
_quad[3].position = new Vector3(posOffset.z, posOffset.y);
}
else
{
Vector2 right = new Vector2(Mathf.Cos(rotation), Mathf.Sin(rotation)) * size;
Vector2 up = new Vector2(Mathf.Cos(rotation90), Mathf.Sin(rotation90)) * size;
_quad[0].position = position - right - up;
_quad[1].position = position - right + up;
_quad[2].position = position + right + up;
_quad[3].position = position + right - up;
}
}
同样是修改UpdateQuad方法。这次要修改的是设置顶点的UV0的过程。每一个粒子,都可以通过获得它的生命周期,然后计算应该播放到序列图的第几帧的图片,然后根据这个第几帧,再计算出当前的例子的UV坐标应该是什么。
这里有个规则的问题,uv坐标从左下角开始是(0,0),右上角是(1,1),但我的序列图四左上角开始是1,右下角是16,所以在计算y坐标的时候,我做了一个反转的操作:
particleUV.y = 1-Mathf.FloorToInt(frame / textureSheetAnimation.numTilesX) * textureSheetAnimationFrameSize.y- textureSheetAnimationFrameSize.y;
这时候播放,会看到序列帧的图片正常的播放了:
同样是可以任意重叠和裁剪的。
完整:
bash
using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using UnityEngine.UI;
using static UnityEngine.ParticleSystem;
[RequireComponent(typeof(CanvasRenderer))]
[RequireComponent(typeof(RectTransform))]
public class UIVertexTest : MaskableGraphic
{
private UIVertex[] _quad = new UIVertex[4];
public Material curMat;
public ParticleSystem particleSys;
private ParticleSystemRenderer particleSysRender;
private ParticleSystem.MainModule mainModule;
private Particle[] particles;
private Vector4 imageUV = new Vector4(0, 0, 1, 1);
// Start is called before the first frame update
private new IEnumerator Start()
{
if(particleSys == null)
{
particleSys = gameObject.GetComponent<ParticleSystem>();
if(particleSys!=null)
{
particleSysRender = particleSys.GetComponent<ParticleSystemRenderer>();
particleSysRender.enabled = false;
mainModule = particleSys.main;
}
}
yield return null;
}
private void UpdateQuad(ParticleSystem ps, Particle p)
{
Color curCol = p.GetCurrentColor(ps);
float size = p.GetCurrentSize(ps) * 0.5f;
float rotation = -p.rotation * Mathf.Deg2Rad;
float rotation90 = rotation + Mathf.PI / 2;
Vector2 position = (mainModule.simulationSpace == ParticleSystemSimulationSpace.Local ? p.position : ps.transform.InverseTransformPoint(p.position));
float scale = canvas.gameObject.GetComponent<RectTransform>().localScale.x;
position /= scale;
size /= scale;
Vector4 particleUV = imageUV;
//计算序列帧动画每一个粒子的uv
if(ps.textureSheetAnimation.enabled == true)
{
TextureSheetAnimationModule textureSheetAnimation = ps.textureSheetAnimation;
float frameProgress = 1 - (p.remainingLifetime / p.startLifetime);
if (textureSheetAnimation.frameOverTime.curveMin != null)
{
frameProgress = textureSheetAnimation.frameOverTime.curveMin.Evaluate(1 - (p.remainingLifetime / p.startLifetime));
}
else if (textureSheetAnimation.frameOverTime.curve != null)
{
frameProgress = textureSheetAnimation.frameOverTime.curve.Evaluate(1 - (p.remainingLifetime / p.startLifetime));
}
else if (textureSheetAnimation.frameOverTime.constant > 0)
{
frameProgress = textureSheetAnimation.frameOverTime.constant - (p.remainingLifetime / p.startLifetime);
}
frameProgress = Mathf.Repeat(frameProgress * textureSheetAnimation.cycleCount, 1);
int frame = 0;
int textureSheetAnimationFrames = textureSheetAnimation.numTilesX * textureSheetAnimation.numTilesY;
Vector2 textureSheetAnimationFrameSize = new Vector2(1f / textureSheetAnimation.numTilesX, 1f / textureSheetAnimation.numTilesY);
switch (textureSheetAnimation.animation)
{
case ParticleSystemAnimationType.WholeSheet:
frame = Mathf.FloorToInt(frameProgress * textureSheetAnimationFrames);
break;
case ParticleSystemAnimationType.SingleRow:
frame = Mathf.FloorToInt(frameProgress * textureSheetAnimation.numTilesX);
int row = textureSheetAnimation.rowIndex;
// if (textureSheetAnimation.useRandomRow) { // FIXME - is this handled internally by rowIndex?
// row = Random.Range(0, textureSheetAnimation.numTilesY, using: particle.randomSeed);
// }
frame += row * textureSheetAnimation.numTilesX;
break;
}
frame %= textureSheetAnimationFrames;
particleUV.x = (frame % textureSheetAnimation.numTilesX) * textureSheetAnimationFrameSize.x;
particleUV.y = 1-Mathf.FloorToInt(frame / textureSheetAnimation.numTilesX) * textureSheetAnimationFrameSize.y- textureSheetAnimationFrameSize.y;
particleUV.z = particleUV.x + textureSheetAnimationFrameSize.x;
particleUV.w = particleUV.y + textureSheetAnimationFrameSize.y;
}
_quad[0] = UIVertex.simpleVert;
_quad[0].color = curCol;
_quad[0].uv0 = new Vector2(particleUV.x, particleUV.y);
_quad[1] = UIVertex.simpleVert;
_quad[1].color = curCol;
_quad[1].uv0 = new Vector2(particleUV.x, particleUV.w);
_quad[2] = UIVertex.simpleVert;
_quad[2].color = curCol;
_quad[2].uv0 = new Vector2(particleUV.z, particleUV.w);
_quad[3] = UIVertex.simpleVert;
_quad[3].color = curCol;
_quad[3].uv0 = new Vector2(particleUV.z, particleUV.y);
if (rotation == 0)
{
Vector4 posOffset = new Vector4();
posOffset.x = position.x - size;
posOffset.y = position.y - size;
posOffset.z = position.x + size;
posOffset.w = position.y + size;
_quad[0].position = new Vector3(posOffset.x,posOffset.y);
_quad[1].position = new Vector3(posOffset.x, posOffset.w);
_quad[2].position = new Vector3(posOffset.z, posOffset.w);
_quad[3].position = new Vector3(posOffset.z, posOffset.y);
}
else
{
Vector2 right = new Vector2(Mathf.Cos(rotation), Mathf.Sin(rotation)) * size;
Vector2 up = new Vector2(Mathf.Cos(rotation90), Mathf.Sin(rotation90)) * size;
_quad[0].position = position - right - up;
_quad[1].position = position - right + up;
_quad[2].position = position + right + up;
_quad[3].position = position + right - up;
}
}
// Update is called once per frame
void Update()
{
CheckMatChange();
CheckParticle();
}
private void CheckMatChange()
{
if(material!=curMat)
{
material = curMat;
}
}
private void CheckParticle()
{
if (particleSys != null)
{
SetAllDirty();
}
}
protected override void OnPopulateMesh(VertexHelper vh)
{
vh.Clear();
if (particleSys == null)
{
return;
}
if(particles == null)
{
particles = new Particle[500];
}
int count = particleSys.GetParticles(particles);
if(count == 0)
{
return;
}
for(int i = 0;i<count;i++)
{
Particle p = particles[i];
UpdateQuad(particleSys, p);
vh.AddUIVertexQuad(_quad);
}
}
}
五、存在问题
这个方案也不是完美无缺的,暂时来说,我发现一些问题,比如:
1、一般特效里面除了粒子系统,还有拖尾等效果,我这个例子里面没有对拖尾进行计算,其实方法相同,也是获得它当前的拖尾的网格,然后绘制就行
2、粒子系统里面存在很多不同的参数设置,我上面的计算不一定很完整,可能会漏一些东西,需要发现的时候再补充
3、MaskableGraphic里面只设置一个材质球,这个材质球必须是用UI类型的Shader才能正常显示,所以粒子自带的shader不能直接使用,要经过改造。所谓的UI类型shader,比如是这样的:
bash
Shader "UIVertexTex"
{
Properties
{
[PerRendererData] _MainTex ("Sprite Texture", 2D) = "white" {}
_Color ("Tint", Color) = (1,1,1,1)
_StencilComp ("Stencil Comparison", Float) = 8
_Stencil ("Stencil ID", Float) = 0
_StencilOp ("Stencil Operation", Float) = 0
_StencilWriteMask ("Stencil Write Mask", Float) = 255
_StencilReadMask ("Stencil Read Mask", Float) = 255
_ColorMask ("Color Mask", Float) = 15
[Toggle(UNITY_UI_ALPHACLIP)] _UseUIAlphaClip ("Use Alpha Clip", Float) = 0
_TextureSample0("Texture Sample 0", 2D) = "white" {}
[HideInInspector] _texcoord( "", 2D ) = "white" {}
}
SubShader
{
LOD 0
Tags { "Queue"="Transparent" "IgnoreProjector"="True" "RenderType"="Transparent" "PreviewType"="Plane" "CanUseSpriteAtlas"="True" }
Stencil
{
Ref [_Stencil]
ReadMask [_StencilReadMask]
WriteMask [_StencilWriteMask]
CompFront [_StencilComp]
PassFront [_StencilOp]
FailFront Keep
ZFailFront Keep
CompBack Always
PassBack Keep
FailBack Keep
ZFailBack Keep
}
Cull Off
Lighting Off
ZWrite Off
ZTest [unity_GUIZTestMode]
Blend SrcAlpha OneMinusSrcAlpha
ColorMask [_ColorMask]
Pass
{
Name "Default"
CGPROGRAM
#pragma vertex vert
#pragma fragment frag
#pragma target 3.0
#include "UnityCG.cginc"
#include "UnityUI.cginc"
#pragma multi_compile __ UNITY_UI_CLIP_RECT
#pragma multi_compile __ UNITY_UI_ALPHACLIP
struct appdata_t
{
float4 vertex : POSITION;
float4 color : COLOR;
float2 texcoord : TEXCOORD0;
UNITY_VERTEX_INPUT_INSTANCE_ID
};
struct v2f
{
float4 vertex : SV_POSITION;
fixed4 color : COLOR;
half2 texcoord : TEXCOORD0;
float4 worldPosition : TEXCOORD1;
UNITY_VERTEX_INPUT_INSTANCE_ID
UNITY_VERTEX_OUTPUT_STEREO
};
uniform fixed4 _Color;
uniform fixed4 _TextureSampleAdd;
uniform float4 _ClipRect;
uniform sampler2D _MainTex;
uniform sampler2D _TextureSample0;
uniform float4 _TextureSample0_ST;
SamplerState sampler_TextureSample0;
v2f vert( appdata_t IN )
{
v2f OUT;
UNITY_SETUP_INSTANCE_ID( IN );
UNITY_INITIALIZE_VERTEX_OUTPUT_STEREO(OUT);
UNITY_TRANSFER_INSTANCE_ID(IN, OUT);
OUT.worldPosition = IN.vertex;
OUT.worldPosition.xyz += float3( 0, 0, 0 ) ;
OUT.vertex = UnityObjectToClipPos(OUT.worldPosition);
OUT.texcoord = IN.texcoord;
OUT.color = IN.color * _Color;
return OUT;
}
fixed4 frag(v2f IN ) : SV_Target
{
float2 uv_TextureSample0 = IN.texcoord.xy * _TextureSample0_ST.xy + _TextureSample0_ST.zw;
float4 tex2DNode1 = tex2D( _TextureSample0, uv_TextureSample0 );
clip( 0.0 );
float4 appendResult3 = (float4(( tex2DNode1 + tex2DNode1 ).rgb , tex2DNode1.a));
half4 color = appendResult3;
#ifdef UNITY_UI_CLIP_RECT
color.a *= UnityGet2DClipping(IN.worldPosition.xy, _ClipRect);
#endif
#ifdef UNITY_UI_ALPHACLIP
clip (color.a - 0.001);
#endif
return color;
}
ENDCG
}
}
它要包含UI的蒙版设置,包含UnityUI.cginc,并且做了Rect和Alpha的裁剪
所以并没有像想象中那么简单,美术特效随便做一个粒子特效,然后挂个脚本,就能随便用在UI上面,最起码,要对Shader进行一定的改造,才能在UI上面正常显示的。