C++算法-青蛙跳台阶【面试】

"青蛙跳台阶"问题是一个经典的递归问题,也与斐波那契数列有关。问题是这样的:一只青蛙站在一个n阶台阶上,它每次可以跳1阶或2阶,问青蛙跳到顶端总共有多少种跳法。

这个问题可以用递归或动态规划来解决。以下是使用C++实现的动态规划解法:

复制代码
#include <iostream>
#include <vector>

// 动态规划解法
int climbStairs(int n) {
    if (n <= 2) {
        return n;
    }
    
    // 创建一个数组来存储子问题的解
    std::vector<int> dp(n + 1, 0);
    // 初始化前两个台阶的跳法
    dp[1] = 1;
    dp[2] = 2;

    // 计算从3阶到n阶的跳法
    for (int i = 3; i <= n; ++i) {
        dp[i] = dp[i - 1] + dp[i - 2];
    }

    // 返回n阶台阶的跳法总数
    return dp[n];
}

int main() {
    int n = 5;
    std::cout << "Number of ways to climb " << n << " steps is: " << climbStairs(n) << std::endl;
    return 0;
}

这段代码中,climbStairs函数使用了一个std::vector<int>来存储子问题的解,避免了重复计算。数组dp[i]表示到达第i阶台阶的跳法数。根据题目条件,到达第i阶台阶的跳法数等于到达(i-1)阶和(i-2)阶台阶的跳法数之和。

面试回答示例:

"青蛙跳台阶问题可以通过动态规划来解决。我们首先定义一个数组dp,其中dp[i]表示到达第i阶台阶的跳法数。我们知道到达第一阶和第二阶都只有一种方法。对于更高的台阶,到达那里的方法数是到达前一阶和前两阶台阶的方法数之和,因为青蛙可以选择从这两个位置跳过来。我们从第三阶台阶开始,逐步计算直到第n阶,最终返回dp[n]作为答案。这种方法避免了递归方法中的重复计算,时间复杂度是O(n),空间复杂度也是O(n)。"

相关推荐
cpp_25013 小时前
P8377 [PFOI Round1] 暴龙的火锅
数据结构·c++·算法·题解·洛谷
uesowys3 小时前
Apache Spark算法开发指导-Factorization machines classifier
人工智能·算法
程序员老舅3 小时前
C++高并发精髓:无锁队列深度解析
linux·c++·内存管理·c/c++·原子操作·无锁队列
划破黑暗的第一缕曙光3 小时前
[C++]:2.类和对象(上)
c++·类和对象
季明洵3 小时前
C语言实现单链表
c语言·开发语言·数据结构·算法·链表
shandianchengzi3 小时前
【小白向】错位排列|图文解释公考常见题目错位排列的递推式Dn=(n-1)(Dn-2+Dn-1)推导方式
笔记·算法·公考·递推·排列·考公
I_LPL3 小时前
day26 代码随想录算法训练营 回溯专题5
算法·回溯·hot100·求职面试·n皇后·解数独
Yeats_Liao3 小时前
评估体系构建:基于自动化指标与人工打分的双重验证
运维·人工智能·深度学习·算法·机器学习·自动化
墨雪不会编程3 小时前
C++之【深入理解Vector】三部曲最终章
开发语言·c++
cpp_25014 小时前
P9586 「MXOI Round 2」游戏
数据结构·c++·算法·题解·洛谷