C++算法-青蛙跳台阶【面试】

"青蛙跳台阶"问题是一个经典的递归问题,也与斐波那契数列有关。问题是这样的:一只青蛙站在一个n阶台阶上,它每次可以跳1阶或2阶,问青蛙跳到顶端总共有多少种跳法。

这个问题可以用递归或动态规划来解决。以下是使用C++实现的动态规划解法:

复制代码
#include <iostream>
#include <vector>

// 动态规划解法
int climbStairs(int n) {
    if (n <= 2) {
        return n;
    }
    
    // 创建一个数组来存储子问题的解
    std::vector<int> dp(n + 1, 0);
    // 初始化前两个台阶的跳法
    dp[1] = 1;
    dp[2] = 2;

    // 计算从3阶到n阶的跳法
    for (int i = 3; i <= n; ++i) {
        dp[i] = dp[i - 1] + dp[i - 2];
    }

    // 返回n阶台阶的跳法总数
    return dp[n];
}

int main() {
    int n = 5;
    std::cout << "Number of ways to climb " << n << " steps is: " << climbStairs(n) << std::endl;
    return 0;
}

这段代码中,climbStairs函数使用了一个std::vector<int>来存储子问题的解,避免了重复计算。数组dp[i]表示到达第i阶台阶的跳法数。根据题目条件,到达第i阶台阶的跳法数等于到达(i-1)阶和(i-2)阶台阶的跳法数之和。

面试回答示例:

"青蛙跳台阶问题可以通过动态规划来解决。我们首先定义一个数组dp,其中dp[i]表示到达第i阶台阶的跳法数。我们知道到达第一阶和第二阶都只有一种方法。对于更高的台阶,到达那里的方法数是到达前一阶和前两阶台阶的方法数之和,因为青蛙可以选择从这两个位置跳过来。我们从第三阶台阶开始,逐步计算直到第n阶,最终返回dp[n]作为答案。这种方法避免了递归方法中的重复计算,时间复杂度是O(n),空间复杂度也是O(n)。"

相关推荐
追随者永远是胜利者6 小时前
(LeetCode-Hot100)253. 会议室 II
java·算法·leetcode·go
会周易的程序员6 小时前
cNetgate物联网网关内存数据表和数据视图模块架构
c语言·c++·物联网·架构·lua·iot
Jason_Honey26 小时前
【平安Agent算法岗面试-二面】
人工智能·算法·面试
程序员酥皮蛋6 小时前
hot 100 第三十五题 35.二叉树的中序遍历
数据结构·算法·leetcode
追随者永远是胜利者6 小时前
(LeetCode-Hot100)207. 课程表
java·算法·leetcode·go
香芋Yu7 小时前
【大模型面试突击】08_推理范式与思维链
面试·职场和发展
云泽8087 小时前
C++ 多态入门:虚函数、重写、虚析构及 override/final 实战指南(附腾讯面试题)
开发语言·c++
仰泳的熊猫7 小时前
题目1535:蓝桥杯算法提高VIP-最小乘积(提高型)
数据结构·c++·算法·蓝桥杯
那起舞的日子8 小时前
动态规划-Dynamic Programing-DP
算法·动态规划
闻缺陷则喜何志丹8 小时前
【前后缀分解】P9255 [PA 2022] Podwyżki|普及+
数据结构·c++·算法·前后缀分解