C++算法-青蛙跳台阶【面试】

"青蛙跳台阶"问题是一个经典的递归问题,也与斐波那契数列有关。问题是这样的:一只青蛙站在一个n阶台阶上,它每次可以跳1阶或2阶,问青蛙跳到顶端总共有多少种跳法。

这个问题可以用递归或动态规划来解决。以下是使用C++实现的动态规划解法:

复制代码
#include <iostream>
#include <vector>

// 动态规划解法
int climbStairs(int n) {
    if (n <= 2) {
        return n;
    }
    
    // 创建一个数组来存储子问题的解
    std::vector<int> dp(n + 1, 0);
    // 初始化前两个台阶的跳法
    dp[1] = 1;
    dp[2] = 2;

    // 计算从3阶到n阶的跳法
    for (int i = 3; i <= n; ++i) {
        dp[i] = dp[i - 1] + dp[i - 2];
    }

    // 返回n阶台阶的跳法总数
    return dp[n];
}

int main() {
    int n = 5;
    std::cout << "Number of ways to climb " << n << " steps is: " << climbStairs(n) << std::endl;
    return 0;
}

这段代码中,climbStairs函数使用了一个std::vector<int>来存储子问题的解,避免了重复计算。数组dp[i]表示到达第i阶台阶的跳法数。根据题目条件,到达第i阶台阶的跳法数等于到达(i-1)阶和(i-2)阶台阶的跳法数之和。

面试回答示例:

"青蛙跳台阶问题可以通过动态规划来解决。我们首先定义一个数组dp,其中dp[i]表示到达第i阶台阶的跳法数。我们知道到达第一阶和第二阶都只有一种方法。对于更高的台阶,到达那里的方法数是到达前一阶和前两阶台阶的方法数之和,因为青蛙可以选择从这两个位置跳过来。我们从第三阶台阶开始,逐步计算直到第n阶,最终返回dp[n]作为答案。这种方法避免了递归方法中的重复计算,时间复杂度是O(n),空间复杂度也是O(n)。"

相关推荐
MrSkye几秒前
🔥JavaScript 入门必知:代码如何运行、变量提升与 let/const🔥
前端·javascript·面试
爱学习的茄子8 分钟前
深入理解JavaScript闭包:从入门到精通的实战指南
前端·javascript·面试
向阳@向远方1 小时前
第二章 简单程序设计
开发语言·c++·算法
Mr_Xuhhh1 小时前
信号与槽的总结
java·开发语言·数据库·c++·qt·系统架构
程序员爱钓鱼1 小时前
Go 语言泛型 — 泛型语法与示例
后端·面试·go
github_czy2 小时前
RRF (Reciprocal Rank Fusion) 排序算法详解
算法·排序算法
liulilittle2 小时前
VGW 虚拟网关用户手册 (PPP PRIVATE NETWORK 基础设施)
开发语言·网络·c++·网关·智能路由器·路由器·通信
许愿与你永世安宁2 小时前
力扣343 整数拆分
数据结构·算法·leetcode
爱coding的橙子2 小时前
每日算法刷题Day42 7.5:leetcode前缀和3道题,用时2h
算法·leetcode·职场和发展
ruanjiananquan992 小时前
c,c++语言的栈内存、堆内存及任意读写内存
java·c语言·c++