C++算法-青蛙跳台阶【面试】

"青蛙跳台阶"问题是一个经典的递归问题,也与斐波那契数列有关。问题是这样的:一只青蛙站在一个n阶台阶上,它每次可以跳1阶或2阶,问青蛙跳到顶端总共有多少种跳法。

这个问题可以用递归或动态规划来解决。以下是使用C++实现的动态规划解法:

复制代码
#include <iostream>
#include <vector>

// 动态规划解法
int climbStairs(int n) {
    if (n <= 2) {
        return n;
    }
    
    // 创建一个数组来存储子问题的解
    std::vector<int> dp(n + 1, 0);
    // 初始化前两个台阶的跳法
    dp[1] = 1;
    dp[2] = 2;

    // 计算从3阶到n阶的跳法
    for (int i = 3; i <= n; ++i) {
        dp[i] = dp[i - 1] + dp[i - 2];
    }

    // 返回n阶台阶的跳法总数
    return dp[n];
}

int main() {
    int n = 5;
    std::cout << "Number of ways to climb " << n << " steps is: " << climbStairs(n) << std::endl;
    return 0;
}

这段代码中,climbStairs函数使用了一个std::vector<int>来存储子问题的解,避免了重复计算。数组dp[i]表示到达第i阶台阶的跳法数。根据题目条件,到达第i阶台阶的跳法数等于到达(i-1)阶和(i-2)阶台阶的跳法数之和。

面试回答示例:

"青蛙跳台阶问题可以通过动态规划来解决。我们首先定义一个数组dp,其中dp[i]表示到达第i阶台阶的跳法数。我们知道到达第一阶和第二阶都只有一种方法。对于更高的台阶,到达那里的方法数是到达前一阶和前两阶台阶的方法数之和,因为青蛙可以选择从这两个位置跳过来。我们从第三阶台阶开始,逐步计算直到第n阶,最终返回dp[n]作为答案。这种方法避免了递归方法中的重复计算,时间复杂度是O(n),空间复杂度也是O(n)。"

相关推荐
小南家的青蛙1 分钟前
LeetCode第773题 - 滑动谜题
算法·leetcode·职场和发展
Felven11 分钟前
C. Isamatdin and His Magic Wand!
c语言·数据结构·算法
AndrewHZ14 分钟前
【芯芯相印】什么是算法定点化?
pytorch·算法·芯片设计·模型量化·定点化·芯片算法·逻辑电路
数据科学小丫18 分钟前
算法:线性回归
算法·回归·线性回归
吗~喽19 分钟前
【C++】模板进阶
c语言·开发语言·c++
剪一朵云爱着26 分钟前
PAT 1131 Subway Map
算法·pat考试·图论
CoderYanger26 分钟前
动态规划算法-子序列问题(数组中不连续的一段):30.最长数对链
java·算法·leetcode·动态规划·1024程序员节
啦哈拉哈29 分钟前
【Python】知识点零碎学习1
数据结构·python·算法
我不会插花弄玉29 分钟前
类与对象-下【由浅入深-C++】
c++
多恩Stone31 分钟前
【3DV 进阶-10】Trellis 中的表示 SLat 理解(1)
人工智能·python·算法·3d·aigc