C++算法-青蛙跳台阶【面试】

"青蛙跳台阶"问题是一个经典的递归问题,也与斐波那契数列有关。问题是这样的:一只青蛙站在一个n阶台阶上,它每次可以跳1阶或2阶,问青蛙跳到顶端总共有多少种跳法。

这个问题可以用递归或动态规划来解决。以下是使用C++实现的动态规划解法:

复制代码
#include <iostream>
#include <vector>

// 动态规划解法
int climbStairs(int n) {
    if (n <= 2) {
        return n;
    }
    
    // 创建一个数组来存储子问题的解
    std::vector<int> dp(n + 1, 0);
    // 初始化前两个台阶的跳法
    dp[1] = 1;
    dp[2] = 2;

    // 计算从3阶到n阶的跳法
    for (int i = 3; i <= n; ++i) {
        dp[i] = dp[i - 1] + dp[i - 2];
    }

    // 返回n阶台阶的跳法总数
    return dp[n];
}

int main() {
    int n = 5;
    std::cout << "Number of ways to climb " << n << " steps is: " << climbStairs(n) << std::endl;
    return 0;
}

这段代码中,climbStairs函数使用了一个std::vector<int>来存储子问题的解,避免了重复计算。数组dp[i]表示到达第i阶台阶的跳法数。根据题目条件,到达第i阶台阶的跳法数等于到达(i-1)阶和(i-2)阶台阶的跳法数之和。

面试回答示例:

"青蛙跳台阶问题可以通过动态规划来解决。我们首先定义一个数组dp,其中dp[i]表示到达第i阶台阶的跳法数。我们知道到达第一阶和第二阶都只有一种方法。对于更高的台阶,到达那里的方法数是到达前一阶和前两阶台阶的方法数之和,因为青蛙可以选择从这两个位置跳过来。我们从第三阶台阶开始,逐步计算直到第n阶,最终返回dp[n]作为答案。这种方法避免了递归方法中的重复计算,时间复杂度是O(n),空间复杂度也是O(n)。"

相关推荐
Stanford_11063 小时前
如何利用Python进行数据分析与可视化的具体操作指南
开发语言·c++·python·微信小程序·微信公众平台·twitter·微信开放平台
千里马-horse4 小时前
Async++ 源码分析8--partitioner.h
开发语言·c++·async++·partitioner
格林威5 小时前
常规线扫描镜头有哪些类型?能做什么?
人工智能·深度学习·数码相机·算法·计算机视觉·视觉检测·工业镜头
Lucis__5 小时前
再探类&对象——C++入门进阶
开发语言·c++
007php0075 小时前
某大厂跳动面试:计算机网络相关问题解析与总结
java·开发语言·学习·计算机网络·mysql·面试·职场和发展
倔强青铜三5 小时前
苦练Python第63天:零基础玩转TOML配置读写,tomllib模块实战
人工智能·python·面试
倔强青铜三6 小时前
苦练Python第62天:零基础玩转CSV文件读写,csv模块实战
人工智能·python·面试
北京不会遇到西雅图6 小时前
【SLAM】【后端优化】不同优化方法对比
c++·机器人
jndingxin6 小时前
c++多线程(6)------ 条件变量
开发语言·c++
AAA修煤气灶刘哥6 小时前
服务器指标多到“洪水泛滥”?试试InfluxDB?
数据库·后端·面试