生命在于学习——Python人工智能原理(3.3)

三、深度学习

4、激活函数

激活函数的主要作用是对神经元获得的输入进行非线性变换,以此反映神经元的非线性特性。常见的激活函数有线性激活函数、符号激活函数、Sigmod激活函数、双曲正切激活函数、高斯激活函数、ReLU激活函数

(1)线性激活函数

F(x)=kx+c,其中k和c是常量、线性函数常用在线性神经网络中。

(2)符号激活函数

(3)Sigmod激活函数

Sigmod函数又称为S形函数,是最为常见的激活函数:
其图像如下

(4)双曲正切激活函数

图像如下所示:

(5)高斯激活函数

(6)ReLU激活函数

也可以表示为F(x)=max(0,x),图像如下图所示:

在神经网络中,ReLU激活函数得到广泛应用,尤其在卷积神经网络中,往往不选择Sigmod或Tanh而选择ReLU,原因主要有以下几点:

a、Sigmod函数求导涉及指数,计算复杂,ReLU代价小,计算速度快。

b、Sigmod函数导数最大值为1/4,链式求导会导致梯度越来越小,训练深度神经网络容易导致梯度消失,但是ReLU函数的导数为1,不会出现梯度消失。

c、有研究表明,人脑在工作时大概只有5%的神经元被激活,而Sigmod函数激活比例是50%,人工神经网络理想状态下激活率为15%-30%,ReLU函数在小于0时完全不激活,可以适应理想网络的激活率要求。

5、梯度下降法

梯度下降法是神经网络模型训练中最常用的优化算法之一,将其应用于寻找损失函数或代价函数的极值点。

常见的梯度下降法有批量下降法、随机梯度下降法和小批量梯度下降法,一般采用小批量梯度下降法。

(1)批量梯度下降法

此方法是最原始的形式,它是指在每一次迭代时使用所有样本来进行梯度的更新。

优点:

a、每次更新使用全部样本,能更准确的朝向极值所在的方向,如果目标函数是凸函数,一定能收敛到全局最小值。

b、它对梯度的无偏估计,样例越多,估计越准确。

c、以此迭代时对所有样本进行计算,可以利用向量化操作实现并行。

缺点:

a、遍历计算所有样本不仅耗时还消耗大量资源。

b、每次更新遍历所有样本,有一些样本对参数更新价值不大。

c、如果是非凸函数,可能会陷入局部最小值。

迭代曲线如下:

(2)随机梯度下降

每次迭代时只使用一个样本对参数进行更新。

优点:

a、每次只计算一个样本,更新速度大大加快。

b、在学习过程中加入了噪声和随机性,提高了泛化误差。

c、对于非凸函数,它的随机性有助于逃离某些不理想的局部最小值,获得全局最优解。

缺点:

a、更新所有样本需要大量时间。

b、学习过程波动较大。

迭代曲线如下:

6、交叉熵损失函数

神经网络中分类问题较常使用交叉熵作为损失函数,二分类问题中公式如下,y*表示为真实标签,y表示预测标签:

多分类问题中公式可以写成下面形式:

二分类的交叉熵python实现如下:

def binary_crossentropy(t,o):

#y_true是真实标签,y_pred是预测值

return -(y_true * np.log(y_pred)+(1-y_true)*np.log(1-y_pred))

相关推荐
YangYang9YangYan7 分钟前
中专服装设计专业职业发展指南
大数据·人工智能·数据分析
新智元17 分钟前
AI 科学家登场!12 小时抵人类科学家半年工作量,已有 7 项大成果
人工智能·openai
新智元17 分钟前
PyTorch 之父闪电离职,AI 半壁江山集体致敬!
人工智能·openai
Larry_Yanan20 分钟前
QML学习笔记(五十二)QML与C++交互:数据转换——时间和日期
开发语言·c++·笔记·qt·学习·ui·交互
TL滕27 分钟前
从0开始学算法——第二天(时间、空间复杂度)
数据结构·笔记·学习·算法
NON-JUDGMENTAL36 分钟前
指令微调(Instruction Tuning)
人工智能·深度学习·机器学习
Funny_AI_LAB39 分钟前
深度解析Andrej Karpathy访谈:关于AI智能体、AGI、强化学习与大模型的十年远见
人工智能·计算机视觉·ai·agi
小兜全糖(xdqt)44 分钟前
python ppt转pdf以及图片提取
python·pdf·powerpoint
互联科技报1 小时前
AI赋能企业办公:文多多AiPPT以技术创新破解行业痛点
人工智能
番石榴AI1 小时前
视频转ppt/pdf V2.0版(新增转为可编辑PPT功能)
人工智能·pdf·powerpoint