【计算机视觉】人脸算法之图像处理基础知识(三)

图像处理基础知识(三)

1.图像二值化

顾名思义,图像二值化是指一张图像上只有两种大小的像素值,常用的是0和255,0表示背景,255表示前景。这种处理方式是非常重要的,大部分的图像处理都会经历该操作。

python 复制代码
import cv2

imgpath = "images/img1.jpg"
img = cv2.imread(imgpath, 0) #以灰度化的方式加载图像
img = cv2.resize(img, (img.shape[1]//2, img.shape[0]//2))
threshold,dst = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY) #二值化操作
cv2.imshow("dst", dst)
cv2.waitKey(0) 

上述代码中,cv2.threshold中127为给定阈值,255表示最大值,cv2.THRESH_BINARY二值化类型,在此代码中表示将小于127的像素值置为0,大于等于127的置为255。二值化类型有非常多种,可详细查看该函数的用法。threshold返回阈值,我们给定的127,所以这个代码中是127。dst则是返回二值化图像。

python 复制代码
import cv2

imgpath = "images/img1.jpg"
img = cv2.imread(imgpath, 0) #以灰度化的方式加载图像
img = cv2.resize(img, (img.shape[1]//2, img.shape[0]//2))
threshold,dst = cv2.threshold(img, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU) #自动求解阈值
print(threshold) #123.0
cv2.imshow("dst", dst)
cv2.waitKey(0) 

这是更加常用的一种方法,自动求解阈值,俗称大津法。此时我们将阈值设为0,而算法会自动找到最佳阈值,threshold=123.0

由于我们手动设置阈值和自动阈值很接近,所以二值化后的图像差异不明显。后种方法是我们更加常用的方法。

相关推荐
通街市密人有4 分钟前
IDF: Iterative Dynamic Filtering Networks for Generalizable Image Denoising
人工智能·深度学习·计算机视觉
ChillJavaGuy28 分钟前
常见限流算法详解与对比
java·算法·限流算法
sali-tec30 分钟前
C# 基于halcon的视觉工作流-章34-环状测量
开发语言·图像处理·算法·计算机视觉·c#
小王爱学人工智能2 小时前
OpenCV一些进阶操作
人工智能·opencv·计算机视觉
你怎么知道我是队长2 小时前
C语言---循环结构
c语言·开发语言·算法
艾醒2 小时前
大模型面试题剖析:RAG中的文本分割策略
人工智能·算法
猫天意4 小时前
【目标检测】metrice_curve和loss_curve对比图可视化
人工智能·深度学习·目标检测·计算机视觉·cv
纪元A梦4 小时前
贪心算法应用:K-Means++初始化详解
算法·贪心算法·kmeans
山烛4 小时前
OpenCV:图像透视变换
人工智能·opencv·计算机视觉·图像透视变换
_不会dp不改名_4 小时前
leetcode_21 合并两个有序链表
算法·leetcode·链表