这是base.py的源码,地址是/home/lsw/miniconda3/envs/mmyolo/lib/python3.8/site-packages/mmdet/models/detectors/base.py
# Copyright (c) OpenMMLab. All rights reserved. from abc import ABCMeta, abstractmethod from typing import Dict, List, Tuple, Union import torch from mmengine.model import BaseModel from torch import Tensor from mmdet.structures import DetDataSample, OptSampleList, SampleList from mmdet.utils import InstanceList, OptConfigType, OptMultiConfig from ..utils import samplelist_boxtype2tensor ForwardResults = Union[Dict[str, torch.Tensor], List[DetDataSample], Tuple[torch.Tensor], torch.Tensor] class BaseDetector(BaseModel, metaclass=ABCMeta): """Base class for detectors. Args: data_preprocessor (dict or ConfigDict, optional): The pre-process config of :class:`BaseDataPreprocessor`. it usually includes, ``pad_size_divisor``, ``pad_value``, ``mean`` and ``std``. init_cfg (dict or ConfigDict, optional): the config to control the initialization. Defaults to None. """ def __init__(self, data_preprocessor: OptConfigType = None, init_cfg: OptMultiConfig = None): super().__init__( data_preprocessor=data_preprocessor, init_cfg=init_cfg) @property def with_neck(self) -> bool: """bool: whether the detector has a neck""" return hasattr(self, 'neck') and self.neck is not None # TODO: these properties need to be carefully handled # for both single stage & two stage detectors @property def with_shared_head(self) -> bool: """bool: whether the detector has a shared head in the RoI Head""" return hasattr(self, 'roi_head') and self.roi_head.with_shared_head @property def with_bbox(self) -> bool: """bool: whether the detector has a bbox head""" return ((hasattr(self, 'roi_head') and self.roi_head.with_bbox) or (hasattr(self, 'bbox_head') and self.bbox_head is not None)) @property def with_mask(self) -> bool: """bool: whether the detector has a mask head""" return ((hasattr(self, 'roi_head') and self.roi_head.with_mask) or (hasattr(self, 'mask_head') and self.mask_head is not None)) def forward(self, inputs: torch.Tensor, data_samples: OptSampleList = None, mode: str = 'tensor') -> ForwardResults: """The unified entry for a forward process in both training and test. The method should accept three modes: "tensor", "predict" and "loss": - "tensor": Forward the whole network and return tensor or tuple of tensor without any post-processing, same as a common nn.Module. - "predict": Forward and return the predictions, which are fully processed to a list of :obj:`DetDataSample`. - "loss": Forward and return a dict of losses according to the given inputs and data samples. Note that this method doesn't handle either back propagation or parameter update, which are supposed to be done in :meth:`train_step`. Args: inputs (torch.Tensor): The input tensor with shape (N, C, ...) in general. data_samples (list[:obj:`DetDataSample`], optional): A batch of data samples that contain annotations and predictions. Defaults to None. mode (str): Return what kind of value. Defaults to 'tensor'. Returns: The return type depends on ``mode``. - If ``mode="tensor"``, return a tensor or a tuple of tensor. - If ``mode="predict"``, return a list of :obj:`DetDataSample`. - If ``mode="loss"``, return a dict of tensor. """ if mode == 'loss': return self.loss(inputs, data_samples) elif mode == 'predict': return self.predict(inputs, data_samples) elif mode == 'tensor': return self._forward(inputs, data_samples) else: raise RuntimeError(f'Invalid mode "{mode}". ' 'Only supports loss, predict and tensor mode') @abstractmethod def loss(self, batch_inputs: Tensor, batch_data_samples: SampleList) -> Union[dict, tuple]: """Calculate losses from a batch of inputs and data samples.""" pass @abstractmethod def predict(self, batch_inputs: Tensor, batch_data_samples: SampleList) -> SampleList: """Predict results from a batch of inputs and data samples with post- processing.""" pass @abstractmethod def _forward(self, batch_inputs: Tensor, batch_data_samples: OptSampleList = None): """Network forward process. Usually includes backbone, neck and head forward without any post- processing. """ pass @abstractmethod def extract_feat(self, batch_inputs: Tensor): """Extract features from images.""" pass def add_pred_to_datasample(self, data_samples: SampleList, results_list: InstanceList) -> SampleList: """Add predictions to `DetDataSample`. Args: data_samples (list[:obj:`DetDataSample`], optional): A batch of data samples that contain annotations and predictions. results_list (list[:obj:`InstanceData`]): Detection results of each image. Returns: list[:obj:`DetDataSample`]: Detection results of the input images. Each DetDataSample usually contain 'pred_instances'. And the ``pred_instances`` usually contains following keys. - scores (Tensor): Classification scores, has a shape (num_instance, ) - labels (Tensor): Labels of bboxes, has a shape (num_instances, ). - bboxes (Tensor): Has a shape (num_instances, 4), the last dimension 4 arrange as (x1, y1, x2, y2). """ for data_sample, pred_instances in zip(data_samples, results_list): data_sample.pred_instances = pred_instances samplelist_boxtype2tensor(data_samples) return data_samples
这是singer_stage.py源码,/home/lsw/miniconda3/envs/mmyolo/lib/python3.8/site-packages/mmdet/models/detectors/single_stage.py
# Copyright (c) OpenMMLab. All rights reserved. from typing import List, Tuple, Union from torch import Tensor from mmdet.registry import MODELS from mmdet.structures import OptSampleList, SampleList from mmdet.utils import ConfigType, OptConfigType, OptMultiConfig from .base import BaseDetector @MODELS.register_module() class SingleStageDetector(BaseDetector): """Base class for single-stage detectors. Single-stage detectors directly and densely predict bounding boxes on the output features of the backbone+neck. """ def __init__(self, backbone: ConfigType, neck: OptConfigType = None, bbox_head: OptConfigType = None, train_cfg: OptConfigType = None, test_cfg: OptConfigType = None, data_preprocessor: OptConfigType = None, init_cfg: OptMultiConfig = None) -> None: super().__init__( data_preprocessor=data_preprocessor, init_cfg=init_cfg) self.backbone = MODELS.build(backbone) if neck is not None: self.neck = MODELS.build(neck) bbox_head.update(train_cfg=train_cfg) bbox_head.update(test_cfg=test_cfg) self.bbox_head = MODELS.build(bbox_head) self.train_cfg = train_cfg self.test_cfg = test_cfg def _load_from_state_dict(self, state_dict: dict, prefix: str, local_metadata: dict, strict: bool, missing_keys: Union[List[str], str], unexpected_keys: Union[List[str], str], error_msgs: Union[List[str], str]) -> None: """Exchange bbox_head key to rpn_head key when loading two-stage weights into single-stage model.""" bbox_head_prefix = prefix + '.bbox_head' if prefix else 'bbox_head' bbox_head_keys = [ k for k in state_dict.keys() if k.startswith(bbox_head_prefix) ] rpn_head_prefix = prefix + '.rpn_head' if prefix else 'rpn_head' rpn_head_keys = [ k for k in state_dict.keys() if k.startswith(rpn_head_prefix) ] if len(bbox_head_keys) == 0 and len(rpn_head_keys) != 0: for rpn_head_key in rpn_head_keys: bbox_head_key = bbox_head_prefix + \ rpn_head_key[len(rpn_head_prefix):] state_dict[bbox_head_key] = state_dict.pop(rpn_head_key) super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs) def loss(self, batch_inputs: Tensor, batch_data_samples: SampleList) -> Union[dict, list]: """Calculate losses from a batch of inputs and data samples. Args: batch_inputs (Tensor): Input images of shape (N, C, H, W). These should usually be mean centered and std scaled. batch_data_samples (list[:obj:`DetDataSample`]): The batch data samples. It usually includes information such as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`. Returns: dict: A dictionary of loss components. """ x = self.extract_feat(batch_inputs) losses = self.bbox_head.loss(x, batch_data_samples) return losses def predict(self, batch_inputs: Tensor, batch_data_samples: SampleList, rescale: bool = True) -> SampleList: """Predict results from a batch of inputs and data samples with post- processing. Args: batch_inputs (Tensor): Inputs with shape (N, C, H, W). batch_data_samples (List[:obj:`DetDataSample`]): The Data Samples. It usually includes information such as `gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`. rescale (bool): Whether to rescale the results. Defaults to True. Returns: list[:obj:`DetDataSample`]: Detection results of the input images. Each DetDataSample usually contain 'pred_instances'. And the ``pred_instances`` usually contains following keys. - scores (Tensor): Classification scores, has a shape (num_instance, ) - labels (Tensor): Labels of bboxes, has a shape (num_instances, ). - bboxes (Tensor): Has a shape (num_instances, 4), the last dimension 4 arrange as (x1, y1, x2, y2). """ x = self.extract_feat(batch_inputs) results_list = self.bbox_head.predict( x, batch_data_samples, rescale=rescale) batch_data_samples = self.add_pred_to_datasample( batch_data_samples, results_list) # results_list_cls, results_list_state, results_list_merge = self.bbox_head.predict( # x, batch_data_samples, rescale=rescale) batch_data_samples = self.add_pred_to_datasample( batch_data_samples, results_list) #================ # batch_data_samples_cls = self.add_pred_to_datasample( # batch_data_samples, results_list_cls) # batch_data_samples_state = self.add_pred_to_datasample( # batch_data_samples, results_list_state) # batch_data_samples_merge = self.add_pred_to_datasample( # batch_data_samples, results_list_merge) return batch_data_samples # return batch_data_samples_cls, batch_data_samples_state, batch_data_samples_merge #================= def _forward( self, batch_inputs: Tensor, batch_data_samples: OptSampleList = None) -> Tuple[List[Tensor]]: """Network forward process. Usually includes backbone, neck and head forward without any post-processing. Args: batch_inputs (Tensor): Inputs with shape (N, C, H, W). batch_data_samples (list[:obj:`DetDataSample`]): Each item contains the meta information of each image and corresponding annotations. Returns: tuple[list]: A tuple of features from ``bbox_head`` forward. """ x = self.extract_feat(batch_inputs) results = self.bbox_head.forward(x) return results def extract_feat(self, batch_inputs: Tensor) -> Tuple[Tensor]: """Extract features. Args: batch_inputs (Tensor): Image tensor with shape (N, C, H ,W). Returns: tuple[Tensor]: Multi-level features that may have different resolutions. """ x = self.backbone(batch_inputs) if self.with_neck: x = self.neck(x) return x
第三个修改的地方:coco_metric.py /home/lsw/miniconda3/envs/mmyolo/lib/python3.8/site-packages/mmdet/evaluation/metrics/coco_metric.py
# Copyright (c) OpenMMLab. All rights reserved. import datetime import itertools import os.path as osp import tempfile from collections import OrderedDict from typing import Dict, List, Optional, Sequence, Union import numpy as np import torch from mmengine.evaluator import BaseMetric from mmengine.fileio import dump, get_local_path, load from mmengine.logging import MMLogger from terminaltables import AsciiTable from mmdet.datasets.api_wrappers import COCO, COCOeval from mmdet.registry import METRICS from mmdet.structures.mask import encode_mask_results from ..functional import eval_recalls @METRICS.register_module() class CocoMetric(BaseMetric): """COCO evaluation metric. Evaluate AR, AP, and mAP for detection tasks including proposal/box detection and instance segmentation. Please refer to https://cocodataset.org/#detection-eval for more details. Args: ann_file (str, optional): Path to the coco format annotation file. If not specified, ground truth annotations from the dataset will be converted to coco format. Defaults to None. metric (str | List[str]): Metrics to be evaluated. Valid metrics include 'bbox', 'segm', 'proposal', and 'proposal_fast'. Defaults to 'bbox'. classwise (bool): Whether to evaluate the metric class-wise. Defaults to False. proposal_nums (Sequence[int]): Numbers of proposals to be evaluated. Defaults to (100, 300, 1000). iou_thrs (float | List[float], optional): IoU threshold to compute AP and AR. If not specified, IoUs from 0.5 to 0.95 will be used. Defaults to None. metric_items (List[str], optional): Metric result names to be recorded in the evaluation result. Defaults to None. format_only (bool): Format the output results without perform evaluation. It is useful when you want to format the result to a specific format and submit it to the test server. Defaults to False. outfile_prefix (str, optional): The prefix of json files. It includes the file path and the prefix of filename, e.g., "a/b/prefix". If not specified, a temp file will be created. Defaults to None. file_client_args (dict, optional): Arguments to instantiate the corresponding backend in mmdet <= 3.0.0rc6. Defaults to None. backend_args (dict, optional): Arguments to instantiate the corresponding backend. Defaults to None. collect_device (str): Device name used for collecting results from different ranks during distributed training. Must be 'cpu' or 'gpu'. Defaults to 'cpu'. prefix (str, optional): The prefix that will be added in the metric names to disambiguate homonymous metrics of different evaluators. If prefix is not provided in the argument, self.default_prefix will be used instead. Defaults to None. sort_categories (bool): Whether sort categories in annotations. Only used for `Objects365V1Dataset`. Defaults to False. """ default_prefix: Optional[str] = 'coco' def __init__(self, ann_file: Optional[str] = None, metric: Union[str, List[str]] = 'bbox', classwise: bool = False, proposal_nums: Sequence[int] = (100, 300, 1000), iou_thrs: Optional[Union[float, Sequence[float]]] = None, metric_items: Optional[Sequence[str]] = None, format_only: bool = False, outfile_prefix: Optional[str] = None, file_client_args: dict = None, backend_args: dict = None, collect_device: str = 'cpu', prefix: Optional[str] = None, sort_categories: bool = False) -> None: super().__init__(collect_device=collect_device, prefix=prefix) # coco evaluation metrics self.metrics = metric if isinstance(metric, list) else [metric] allowed_metrics = ['bbox', 'segm', 'proposal', 'proposal_fast'] for metric in self.metrics: if metric not in allowed_metrics: raise KeyError( "metric should be one of 'bbox', 'segm', 'proposal', " f"'proposal_fast', but got {metric}.") # do class wise evaluation, default False self.classwise = classwise # proposal_nums used to compute recall or precision. self.proposal_nums = list(proposal_nums) # iou_thrs used to compute recall or precision. if iou_thrs is None: iou_thrs = np.linspace( .5, 0.95, int(np.round((0.95 - .5) / .05)) + 1, endpoint=True) self.iou_thrs = iou_thrs self.metric_items = metric_items self.format_only = format_only if self.format_only: assert outfile_prefix is not None, 'outfile_prefix must be not' 'None when format_only is True, otherwise the result files will' 'be saved to a temp directory which will be cleaned up at the end.' self.outfile_prefix = outfile_prefix self.backend_args = backend_args if file_client_args is not None: raise RuntimeError( 'The `file_client_args` is deprecated, ' 'please use `backend_args` instead, please refer to' 'https://github.com/open-mmlab/mmdetection/blob/main/configs/_base_/datasets/coco_detection.py' # noqa: E501 ) # if ann_file is not specified, # initialize coco api with the converted dataset if ann_file is not None: with get_local_path( ann_file, backend_args=self.backend_args) as local_path: self._coco_api = COCO(local_path) if sort_categories: # 'categories' list in objects365_train.json and # objects365_val.json is inconsistent, need sort # list(or dict) before get cat_ids. cats = self._coco_api.cats sorted_cats = {i: cats[i] for i in sorted(cats)} self._coco_api.cats = sorted_cats categories = self._coco_api.dataset['categories'] sorted_categories = sorted( categories, key=lambda i: i['id']) self._coco_api.dataset['categories'] = sorted_categories else: self._coco_api = None # handle dataset lazy init self.cat_ids = None self.img_ids = None def fast_eval_recall(self, results: List[dict], proposal_nums: Sequence[int], iou_thrs: Sequence[float], logger: Optional[MMLogger] = None) -> np.ndarray: """Evaluate proposal recall with COCO's fast_eval_recall. Args: results (List[dict]): Results of the dataset. proposal_nums (Sequence[int]): Proposal numbers used for evaluation. iou_thrs (Sequence[float]): IoU thresholds used for evaluation. logger (MMLogger, optional): Logger used for logging the recall summary. Returns: np.ndarray: Averaged recall results. """ gt_bboxes = [] pred_bboxes = [result['bboxes'] for result in results] for i in range(len(self.img_ids)): ann_ids = self._coco_api.get_ann_ids(img_ids=self.img_ids[i]) ann_info = self._coco_api.load_anns(ann_ids) if len(ann_info) == 0: gt_bboxes.append(np.zeros((0, 4))) continue bboxes = [] for ann in ann_info: if ann.get('ignore', False) or ann['iscrowd']: continue x1, y1, w, h = ann['bbox'] bboxes.append([x1, y1, x1 + w, y1 + h]) bboxes = np.array(bboxes, dtype=np.float32) if bboxes.shape[0] == 0: bboxes = np.zeros((0, 4)) gt_bboxes.append(bboxes) recalls = eval_recalls( gt_bboxes, pred_bboxes, proposal_nums, iou_thrs, logger=logger) ar = recalls.mean(axis=1) return ar def xyxy2xywh(self, bbox: np.ndarray) -> list: """Convert ``xyxy`` style bounding boxes to ``xywh`` style for COCO evaluation. Args: bbox (numpy.ndarray): The bounding boxes, shape (4, ), in ``xyxy`` order. Returns: list[float]: The converted bounding boxes, in ``xywh`` order. """ _bbox: List = bbox.tolist() return [ _bbox[0], _bbox[1], _bbox[2] - _bbox[0], _bbox[3] - _bbox[1], ] def results2json(self, results: Sequence[dict], outfile_prefix: str) -> dict: """Dump the detection results to a COCO style json file. There are 3 types of results: proposals, bbox predictions, mask predictions, and they have different data types. This method will automatically recognize the type, and dump them to json files. Args: results (Sequence[dict]): Testing results of the dataset. outfile_prefix (str): The filename prefix of the json files. If the prefix is "somepath/xxx", the json files will be named "somepath/xxx.bbox.json", "somepath/xxx.segm.json", "somepath/xxx.proposal.json". Returns: dict: Possible keys are "bbox", "segm", "proposal", and values are corresponding filenames. """ bbox_json_results = [] segm_json_results = [] if 'masks' in results[0] else None for idx, result in enumerate(results): image_id = result.get('img_id', idx) labels = result['labels'] bboxes = result['bboxes'] scores = result['scores'] # bbox results for i, label in enumerate(labels): data = dict() data['image_id'] = image_id data['bbox'] = self.xyxy2xywh(bboxes[i]) data['score'] = float(scores[i]) data['category_id'] = self.cat_ids[label] bbox_json_results.append(data) if segm_json_results is None: continue # segm results masks = result['masks'] mask_scores = result.get('mask_scores', scores) for i, label in enumerate(labels): data = dict() data['image_id'] = image_id data['bbox'] = self.xyxy2xywh(bboxes[i]) data['score'] = float(mask_scores[i]) data['category_id'] = self.cat_ids[label] if isinstance(masks[i]['counts'], bytes): masks[i]['counts'] = masks[i]['counts'].decode() data['segmentation'] = masks[i] segm_json_results.append(data) result_files = dict() result_files['bbox'] = f'{outfile_prefix}.bbox.json' result_files['proposal'] = f'{outfile_prefix}.bbox.json' dump(bbox_json_results, result_files['bbox']) if segm_json_results is not None: result_files['segm'] = f'{outfile_prefix}.segm.json' dump(segm_json_results, result_files['segm']) return result_files def gt_to_coco_json(self, gt_dicts: Sequence[dict], outfile_prefix: str) -> str: """Convert ground truth to coco format json file. Args: gt_dicts (Sequence[dict]): Ground truth of the dataset. outfile_prefix (str): The filename prefix of the json files. If the prefix is "somepath/xxx", the json file will be named "somepath/xxx.gt.json". Returns: str: The filename of the json file. """ categories = [ dict(id=id, name=name) for id, name in enumerate(self.dataset_meta['classes']) ] image_infos = [] annotations = [] for idx, gt_dict in enumerate(gt_dicts): img_id = gt_dict.get('img_id', idx) image_info = dict( id=img_id, width=gt_dict['width'], height=gt_dict['height'], file_name='') image_infos.append(image_info) for ann in gt_dict['anns']: label = ann['bbox_label'] bbox = ann['bbox'] coco_bbox = [ bbox[0], bbox[1], bbox[2] - bbox[0], bbox[3] - bbox[1], ] annotation = dict( id=len(annotations) + 1, # coco api requires id starts with 1 image_id=img_id, bbox=coco_bbox, iscrowd=ann.get('ignore_flag', 0), category_id=int(label), area=coco_bbox[2] * coco_bbox[3]) if ann.get('mask', None): mask = ann['mask'] # area = mask_util.area(mask) if isinstance(mask, dict) and isinstance( mask['counts'], bytes): mask['counts'] = mask['counts'].decode() annotation['segmentation'] = mask # annotation['area'] = float(area) annotations.append(annotation) info = dict( date_created=str(datetime.datetime.now()), description='Coco json file converted by mmdet CocoMetric.') coco_json = dict( info=info, images=image_infos, categories=categories, licenses=None, ) if len(annotations) > 0: coco_json['annotations'] = annotations converted_json_path = f'{outfile_prefix}.gt.json' dump(coco_json, converted_json_path) return converted_json_path # TODO: data_batch is no longer needed, consider adjusting the # parameter position def process(self, data_batch: dict, data_samples: Sequence[dict]) -> None: """Process one batch of data samples and predictions. The processed results should be stored in ``self.results``, which will be used to compute the metrics when all batches have been processed. Args: data_batch (dict): A batch of data from the dataloader. data_samples (Sequence[dict]): A batch of data samples that contain annotations and predictions. """ for data_sample in data_samples: result = dict() pred = data_sample['pred_instances'] result['img_id'] = data_sample['img_id'] result['bboxes'] = pred['bboxes'].cpu().numpy() result['scores'] = pred['scores'].cpu().numpy() result['labels'] = pred['labels'].cpu().numpy() # encode mask to RLE if 'masks' in pred: result['masks'] = encode_mask_results( pred['masks'].detach().cpu().numpy()) if isinstance( pred['masks'], torch.Tensor) else pred['masks'] # some detectors use different scores for bbox and mask if 'mask_scores' in pred: result['mask_scores'] = pred['mask_scores'].cpu().numpy() # parse gt gt = dict() gt['width'] = data_sample['ori_shape'][1] gt['height'] = data_sample['ori_shape'][0] gt['img_id'] = data_sample['img_id'] if self._coco_api is None: # TODO: Need to refactor to support LoadAnnotations assert 'instances' in data_sample, \ 'ground truth is required for evaluation when ' \ '`ann_file` is not provided' gt['anns'] = data_sample['instances'] # add converted result to the results list self.results.append((gt, result)) def compute_metrics(self, results: list) -> Dict[str, float]: """Compute the metrics from processed results. Args: results (list): The processed results of each batch. Returns: Dict[str, float]: The computed metrics. The keys are the names of the metrics, and the values are corresponding results. """ logger: MMLogger = MMLogger.get_current_instance() # split gt and prediction list gts, preds = zip(*results) tmp_dir = None if self.outfile_prefix is None: tmp_dir = tempfile.TemporaryDirectory() outfile_prefix = osp.join(tmp_dir.name, 'results') else: outfile_prefix = self.outfile_prefix if self._coco_api is None: # use converted gt json file to initialize coco api logger.info('Converting ground truth to coco format...') coco_json_path = self.gt_to_coco_json( gt_dicts=gts, outfile_prefix=outfile_prefix) self._coco_api = COCO(coco_json_path) # handle lazy init if self.cat_ids is None: self.cat_ids = self._coco_api.get_cat_ids( cat_names=self.dataset_meta['classes']) if self.img_ids is None: self.img_ids = self._coco_api.get_img_ids() # convert predictions to coco format and dump to json file result_files = self.results2json(preds, outfile_prefix) eval_results = OrderedDict() if self.format_only: logger.info('results are saved in ' f'{osp.dirname(outfile_prefix)}') return eval_results for metric in self.metrics: logger.info(f'Evaluating {metric}...') # TODO: May refactor fast_eval_recall to an independent metric? # fast eval recall if metric == 'proposal_fast': ar = self.fast_eval_recall( preds, self.proposal_nums, self.iou_thrs, logger=logger) log_msg = [] for i, num in enumerate(self.proposal_nums): eval_results[f'AR@{num}'] = ar[i] log_msg.append(f'\nAR@{num}\t{ar[i]:.4f}') log_msg = ''.join(log_msg) logger.info(log_msg) continue # evaluate proposal, bbox and segm iou_type = 'bbox' if metric == 'proposal' else metric if metric not in result_files: raise KeyError(f'{metric} is not in results') try: predictions = load(result_files[metric]) if iou_type == 'segm': # Refer to https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocotools/coco.py#L331 # noqa # When evaluating mask AP, if the results contain bbox, # cocoapi will use the box area instead of the mask area # for calculating the instance area. Though the overall AP # is not affected, this leads to different # small/medium/large mask AP results. for x in predictions: x.pop('bbox') coco_dt = self._coco_api.loadRes(predictions) except IndexError: logger.error( 'The testing results of the whole dataset is empty.') break coco_eval = COCOeval(self._coco_api, coco_dt, iou_type) coco_eval.params.catIds = self.cat_ids coco_eval.params.imgIds = self.img_ids coco_eval.params.maxDets = list(self.proposal_nums) coco_eval.params.iouThrs = self.iou_thrs # mapping of cocoEval.stats coco_metric_names = { 'mAP': 0, 'mAP_50': 1, 'mAP_75': 2, 'mAP_s': 3, 'mAP_m': 4, 'mAP_l': 5, 'AR@100': 6, 'AR@300': 7, 'AR@1000': 8, 'AR_s@1000': 9, 'AR_m@1000': 10, 'AR_l@1000': 11 } metric_items = self.metric_items if metric_items is not None: for metric_item in metric_items: if metric_item not in coco_metric_names: raise KeyError( f'metric item "{metric_item}" is not supported') if metric == 'proposal': coco_eval.params.useCats = 0 coco_eval.evaluate() coco_eval.accumulate() coco_eval.summarize() if metric_items is None: metric_items = [ 'AR@100', 'AR@300', 'AR@1000', 'AR_s@1000', 'AR_m@1000', 'AR_l@1000' ] for item in metric_items: val = float( f'{coco_eval.stats[coco_metric_names[item]]:.3f}') eval_results[item] = val else: coco_eval.evaluate() coco_eval.accumulate() coco_eval.summarize() if self.classwise: # Compute per-category AP # Compute per-category AP # from https://github.com/facebookresearch/detectron2/ precisions = coco_eval.eval['precision'] # precision: (iou, recall, cls, area range, max dets) assert len(self.cat_ids) == precisions.shape[2] results_per_category = [] for idx, cat_id in enumerate(self.cat_ids): t = [] # area range index 0: all area ranges # max dets index -1: typically 100 per image nm = self._coco_api.loadCats(cat_id)[0] precision = precisions[:, :, idx, 0, -1] precision = precision[precision > -1] if precision.size: ap = np.mean(precision) else: ap = float('nan') t.append(f'{nm["name"]}') t.append(f'{round(ap, 3)}') eval_results[f'{nm["name"]}_precision'] = round(ap, 3) # indexes of IoU @50 and @75 for iou in [0, 5]: precision = precisions[iou, :, idx, 0, -1] precision = precision[precision > -1] if precision.size: ap = np.mean(precision) else: ap = float('nan') t.append(f'{round(ap, 3)}') # indexes of area of small, median and large for area in [1, 2, 3]: precision = precisions[:, :, idx, area, -1] precision = precision[precision > -1] if precision.size: ap = np.mean(precision) else: ap = float('nan') t.append(f'{round(ap, 3)}') results_per_category.append(tuple(t)) num_columns = len(results_per_category[0]) results_flatten = list( itertools.chain(*results_per_category)) headers = [ 'category', 'mAP', 'mAP_50', 'mAP_75', 'mAP_s', 'mAP_m', 'mAP_l' ] results_2d = itertools.zip_longest(*[ results_flatten[i::num_columns] for i in range(num_columns) ]) table_data = [headers] table_data += [result for result in results_2d] table = AsciiTable(table_data) logger.info('\n' + table.table) if metric_items is None: metric_items = [ 'mAP', 'mAP_50', 'mAP_75', 'mAP_s', 'mAP_m', 'mAP_l' ] for metric_item in metric_items: key = f'{metric}_{metric_item}' val = coco_eval.stats[coco_metric_names[metric_item]] eval_results[key] = float(f'{round(val, 3)}') ap = coco_eval.stats[:6] logger.info(f'{metric}_mAP_copypaste: {ap[0]:.3f} ' f'{ap[1]:.3f} {ap[2]:.3f} {ap[3]:.3f} ' f'{ap[4]:.3f} {ap[5]:.3f}') if tmp_dir is not None: tmp_dir.cleanup() return eval_results