简单的Scikit-Learn入门示例

以下是一个简单的Scikit-Learn入门示例,该示例使用鸢尾花(Iris)数据集来演示分类问题的基本步骤。这个数据集包含了150个样本,每个样本有四个特征(花萼长度、花萼宽度、花瓣长度、花瓣宽度),以及一个目标变量(花的种类,分为山鸢尾、杂色鸢尾和维吉尼亚鸢尾)。

python 复制代码
# 导入必要的库
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score

# 加载鸢尾花数据集
iris = load_iris()
X = iris.data  # 特征数据
y = iris.target  # 目标变量(花的种类)

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 数据预处理(可选步骤,这里使用特征缩放)
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)

# 选择并训练模型(这里使用支持向量机SVM)
model = SVC(kernel='linear', C=1, random_state=42)
model.fit(X_train_scaled, y_train)

# 预测测试集结果
y_pred = model.predict(X_test_scaled)

# 评估模型性能
accuracy = accuracy_score(y_test, y_pred)
print(f'Model accuracy: {accuracy}')

在这个示例中,我们首先导入了必要的库,然后加载了鸢尾花数据集。接着,我们使用train_test_split函数将数据集划分为训练集和测试集。然后,我们选择了一个数据预处理方法(特征缩放),并用它处理了训练集和测试集的特征。之后,我们选择了支持向量机(SVM)作为分类器,并使用训练集数据训练了模型。最后,我们用模型对测试集进行了预测,并计算了模型的准确率。

相关推荐
武汉大学-王浩宇20 分钟前
LLaMa-Factory的继续训练(Resume Training)
人工智能·机器学习
haiyu_y41 分钟前
Day 58 经典时序模型 2(ARIMA / 季节性 / 残差诊断)
人工智能·深度学习·ar
sunfove1 小时前
贝叶斯模型 (Bayesian Model) 的直觉与硬核原理
人工智能·机器学习·概率论
汽车仪器仪表相关领域1 小时前
AI赋能智能检测,引领灯光检测新高度——NHD-6109智能全自动远近光检测仪项目实战分享
大数据·人工智能·功能测试·机器学习·汽车·可用性测试·安全性测试
Stuomasi_xiaoxin1 小时前
ROS2介绍,及ubuntu22.04 安装ROS 2部署使用!
linux·人工智能·深度学习·ubuntu
李泽辉_1 小时前
深度学习算法学习(五):手动实现梯度计算、反向传播、优化器Adam
深度学习·学习·算法
李泽辉_2 小时前
深度学习算法学习(一):梯度下降法和最简单的深度学习核心原理代码
深度学习·学习·算法
予枫的编程笔记2 小时前
【论文解读】DLF:以语言为核心的多模态情感分析新范式 (AAAI 2025)
人工智能·python·算法·机器学习
HyperAI超神经2 小时前
完整回放|上海创智/TileAI/华为/先进编译实验室/AI9Stars深度拆解 AI 编译器技术实践
人工智能·深度学习·机器学习·开源
明月(Alioo)2 小时前
AIGC入门,在Mac上基于Ollama和phi3:mini的完整Agent/Subagent例子
机器学习·aigc·agent·subagent