简单的Scikit-Learn入门示例

以下是一个简单的Scikit-Learn入门示例,该示例使用鸢尾花(Iris)数据集来演示分类问题的基本步骤。这个数据集包含了150个样本,每个样本有四个特征(花萼长度、花萼宽度、花瓣长度、花瓣宽度),以及一个目标变量(花的种类,分为山鸢尾、杂色鸢尾和维吉尼亚鸢尾)。

python 复制代码
# 导入必要的库
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score

# 加载鸢尾花数据集
iris = load_iris()
X = iris.data  # 特征数据
y = iris.target  # 目标变量(花的种类)

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 数据预处理(可选步骤,这里使用特征缩放)
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)

# 选择并训练模型(这里使用支持向量机SVM)
model = SVC(kernel='linear', C=1, random_state=42)
model.fit(X_train_scaled, y_train)

# 预测测试集结果
y_pred = model.predict(X_test_scaled)

# 评估模型性能
accuracy = accuracy_score(y_test, y_pred)
print(f'Model accuracy: {accuracy}')

在这个示例中,我们首先导入了必要的库,然后加载了鸢尾花数据集。接着,我们使用train_test_split函数将数据集划分为训练集和测试集。然后,我们选择了一个数据预处理方法(特征缩放),并用它处理了训练集和测试集的特征。之后,我们选择了支持向量机(SVM)作为分类器,并使用训练集数据训练了模型。最后,我们用模型对测试集进行了预测,并计算了模型的准确率。

相关推荐
A-大程序员32 分钟前
【pytorch】合并与分割
人工智能·pytorch·深度学习
Q26433650232 小时前
【有源码】基于Hadoop生态的大数据共享单车数据分析与可视化平台-基于Python与大数据的共享单车多维度数据分析可视化系统
大数据·hadoop·python·机器学习·数据分析·spark·毕业设计
材料科学研究2 小时前
掌握PINN:从理论到实战的神经网络进阶!!
深度学习·神经网络·pinn
B站计算机毕业设计之家3 小时前
多模态项目:Python人脸表情系统 CNN算法 神经网络+Adaboost定位+PyQt5界面 源码+文档 深度学习实战✅
python·深度学习·神经网络·opencv·yolo·计算机视觉·情绪识别
B站_计算机毕业设计之家4 小时前
Python+Flask+Prophet 汽车之家二手车系统 逻辑回归 二手车推荐系统 机器学习(逻辑回归+Echarts 源码+文档)✅
大数据·人工智能·python·机器学习·数据分析·汽车·大屏端
MoRanzhi12034 小时前
SciPy傅里叶变换与信号处理教程:数学原理与Python实现
python·机器学习·数学建模·数据分析·信号处理·傅里叶分析·scipy
AI人工智能+4 小时前
行驶证识别技术通过OCR和AI实现信息自动化采集与处理,涵盖图像预处理、文字识别及结构化校验,提升效率与准确性
人工智能·深度学习·ocr·行驶证识别
dlraba8024 小时前
Pandas:机器学习数据处理的核心利器
人工智能·机器学习·pandas
m0_677034354 小时前
机器学习-推荐系统(上)
人工智能·机器学习
箫乾4 小时前
第78篇:AI+交通:自动驾驶、智能交通管理与物流优化
人工智能·机器学习·自动驾驶