简单的Scikit-Learn入门示例

以下是一个简单的Scikit-Learn入门示例,该示例使用鸢尾花(Iris)数据集来演示分类问题的基本步骤。这个数据集包含了150个样本,每个样本有四个特征(花萼长度、花萼宽度、花瓣长度、花瓣宽度),以及一个目标变量(花的种类,分为山鸢尾、杂色鸢尾和维吉尼亚鸢尾)。

python 复制代码
# 导入必要的库
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score

# 加载鸢尾花数据集
iris = load_iris()
X = iris.data  # 特征数据
y = iris.target  # 目标变量(花的种类)

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 数据预处理(可选步骤,这里使用特征缩放)
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)

# 选择并训练模型(这里使用支持向量机SVM)
model = SVC(kernel='linear', C=1, random_state=42)
model.fit(X_train_scaled, y_train)

# 预测测试集结果
y_pred = model.predict(X_test_scaled)

# 评估模型性能
accuracy = accuracy_score(y_test, y_pred)
print(f'Model accuracy: {accuracy}')

在这个示例中,我们首先导入了必要的库,然后加载了鸢尾花数据集。接着,我们使用train_test_split函数将数据集划分为训练集和测试集。然后,我们选择了一个数据预处理方法(特征缩放),并用它处理了训练集和测试集的特征。之后,我们选择了支持向量机(SVM)作为分类器,并使用训练集数据训练了模型。最后,我们用模型对测试集进行了预测,并计算了模型的准确率。

相关推荐
皮肤科大白43 分钟前
如何在data.table中处理缺失值
学习·算法·机器学习
有Li44 分钟前
基于深度学习的微出血自动检测及解剖尺度定位|文献速递-视觉大模型医疗图像应用
人工智能·深度学习
熙曦Sakura1 小时前
【深度学习】微积分
人工智能·深度学习
汤姆和佩琦1 小时前
2025-1-21-sklearn学习(43) 使用 scikit-learn 介绍机器学习 楼上阑干横斗柄,寒露人远鸡相应。
人工智能·python·学习·机器学习·scikit-learn·sklearn
HyperAI超神经1 小时前
【TVM教程】为 ARM CPU 自动调优卷积网络
arm开发·人工智能·python·深度学习·机器学习·tvm·编译器
IT古董2 小时前
【深度学习】常见模型-卷积神经网络(Convolutional Neural Networks, CNN)
人工智能·深度学习·cnn
Luzem03192 小时前
使用scikit-learn中的KNN包实现对鸢尾花数据集的预测
人工智能·深度学习·机器学习
缺的不是资料,是学习的心2 小时前
使用qwen作为基座训练分类大模型
python·机器学习·分类
AI趋势预见2 小时前
使用AI生成金融时间序列数据:解决股市场的数据稀缺问题并提升信噪比
人工智能·深度学习·神经网络·语言模型·金融
Zda天天爱打卡3 小时前
【机器学习实战中阶】使用Python和OpenCV进行手语识别
人工智能·python·深度学习·opencv·机器学习