AI网络爬虫:批量爬取AI导航网站Futurepedia数据

Futurepedia致力于使AI技术对各行各业的专业人士更加可理解和实用,提供全面的AI网站和工具目录、易于遵循的指南、每周新闻通讯和信息丰富的YouTube频道,简化AI在专业实践中的整合。如何把Futurepedia上的全部AI网站数据爬取下来呢?

网站一页有12个AI工具介绍,根据网站说明:We've categorized 5571 AI tools into 10 categories.,估计一共有465页。

每页的请求网址是:https://www.futurepedia.io/api/search

参数是:

{"verified":false,"sort":"popular","feature":[],"pricing":[],"q":"","page":3}

{"verified":false,"sort":"popular","feature":[],"pricing":[],"q":"","page":4}

在ChatGPT中输入提示词:

你是一个Python编程专家,完成一个Python脚本编写的任务,具体步骤如下:

在F盘新建一个Excel文件:futurepediaio20240609.xlsx

爬取网页:

请求网址:

https://www.futurepedia.io/api/search

请求方法:

POST

状态代码:

200 OK

远程地址:

127.0.0.1:10809

引荐来源网址政策:

strict-origin-when-cross-origin

请求载荷:{"verified":false,"sort":"popular","feature":[],"pricing":[],"q":"","page":{pagenumber}}

{pagenumber}从1开始,以1递增,以465结束

获取网页的响应,这是一个嵌套的json数据;

获取json数据中"data"键的值,这也是一个json数据;

提取每个json数据中所有键的名称,写入Excel文件的表头,所有键对应的值,写入Excel文件的数据列;

保存Excel文件;

注意:每一步都输出信息到屏幕;

每爬取1页数据后暂停5-9秒;

需要对 JSON 数据进行预处理,将嵌套的字典和列表转换成适合写入 Excel 的格式,比如将嵌套的字典转换为字符串。

要设置请求标头:

Accept:

application/json, text/plain, */*

Accept-Encoding:

gzip, deflate, br, zstd

Accept-Language:

zh-CN,zh;q=0.9,en;q=0.8

Content-Length:

77

Content-Type:

application/json

Origin:

https://www.futurepedia.io

Priority:

u=1, i

Referer:

https://www.futurepedia.io/?sort=popular

Sec-Ch-Ua:

"Google Chrome";v="125", "Chromium";v="125", "Not.A/Brand";v="24"

Sec-Ch-Ua-Mobile:

?0

Sec-Ch-Ua-Platform:

"Windows"

Sec-Fetch-Dest:

empty

Sec-Fetch-Mode:

cors

Sec-Fetch-Site:

same-origin

User-Agent:

Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/125.0.0.0 Safari/537.36

ChatGPT生成的源代码:

import requests

import openpyxl

import time

import random

import json

文件路径和名称

file_path = r"F:\futurepediaio20240609.xlsx"

创建一个新的 Excel 工作簿

wb = openpyxl.Workbook()

ws = wb.active

ws.title = "Search Results"

请求的 URL 和方法

url = "https://www.futurepedia.io/api/search"

请求头

request_headers = {

'Accept': 'application/json, text/plain, */*',

'Accept-Encoding': 'gzip, deflate, br, zstd',

'Accept-Language': 'zh-CN,zh;q=0.9,en;q=0.8',

'Content-Length': '77',

'Content-Type': 'application/json',

'Origin': 'https://www.futurepedia.io',

'Priority': 'u=1, i',

'Referer': 'https://www.futurepedia.io/?sort=popular',

'Sec-Ch-Ua': '"Google Chrome";v="125", "Chromium";v="125", "Not.A/Brand";v="24"',

'Sec-Ch-Ua-Mobile': '?0',

'Sec-Ch-Ua-Platform': '"Windows"',

'Sec-Fetch-Dest': 'empty',

'Sec-Fetch-Mode': 'cors',

'Sec-Fetch-Site': 'same-origin',

'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/125.0.0.0 Safari/537.36'

}

初始页码

page_number = 1

headers_written = False

数据处理函数:将嵌套的字典或列表转换为字符串

def clean_data(value):

if isinstance(value, (dict, list)):

return json.dumps(value, ensure_ascii=False) # 确保非 ASCII 字符被正确编码

return value

爬取数据

while page_number <= 465:

print(f"正在爬取第 {page_number} 页的数据...")

请求载荷

payload = {

"verified": False,

"sort": "popular",

"feature": [],

"pricing": [],

"q": "",

"page": page_number

}

发送 POST 请求

try:

response = requests.post(url, headers=request_headers, json=payload)

except Exception as e:

print(f"请求失败,错误信息:{e}")

break

检查请求是否成功

if response.status_code != 200:

print(f"请求失败,状态码:{response.status_code}")

break

获取 JSON 数据

data = response.json()

products = data.get("data", [])

if products:

if not headers_written:

获取 JSON 数据中的键作为表头

headers = set()

for product in products:

headers.update(product.keys())

headers = list(headers)

ws.append(headers)

headers_written = True

将数据写入 Excel

for product in products:

cleaned_product = [clean_data(product.get(header, "")) for header in headers]

ws.append(cleaned_product)

保存 Excel 文件

wb.save(file_path)

print(f"第 {page_number} 页的数据已写入 Excel 文件。")

随机暂停 5-9 秒

sleep_time = random.randint(5, 9)

print(f"暂停 {sleep_time} 秒...")

time.sleep(sleep_time)

else:

print(f"第 {page_number} 页没有数据。")

break

更新页码

page_number += 1

print(f"数据爬取完成,文件已保存至:{file_path}")

相关推荐
Yuleave15 分钟前
高效流式大语言模型(StreamingLLM)——基于“注意力汇聚点”的突破性研究
人工智能·语言模型·自然语言处理
cqbzcsq17 分钟前
ESMC-600M蛋白质语言模型本地部署攻略
人工智能·语言模型·自然语言处理
刀客1231 小时前
python3+TensorFlow 2.x(四)反向传播
人工智能·python·tensorflow
SpikeKing1 小时前
LLM - 大模型 ScallingLaws 的设计 100B 预训练方案(PLM) 教程(5)
人工智能·llm·预训练·scalinglaws·100b·deepnorm·egs
小枫@码2 小时前
免费GPU算力,不花钱部署DeepSeek-R1
人工智能·语言模型
liruiqiang052 小时前
机器学习 - 初学者需要弄懂的一些线性代数的概念
人工智能·线性代数·机器学习·线性回归
Icomi_2 小时前
【外文原版书阅读】《机器学习前置知识》1.线性代数的重要性,初识向量以及向量加法
c语言·c++·人工智能·深度学习·神经网络·机器学习·计算机视觉
微学AI2 小时前
GPU算力平台|在GPU算力平台部署可图大模型Kolors的应用实战教程
人工智能·大模型·llm·gpu算力
西猫雷婶2 小时前
python学opencv|读取图像(四十六)使用cv2.bitwise_or()函数实现图像按位或运算
人工智能·opencv·计算机视觉
IT古董2 小时前
【深度学习】常见模型-生成对抗网络(Generative Adversarial Network, GAN)
人工智能·深度学习·生成对抗网络