Python&SQL应用随笔4——PySpark创建SQL临时表

零、前言

Python中直接跑SQL,可以很好的解决数据导过来导过去的问题,本文方法主要针对大运算量时,如何更好地让Python和SQL打好配合。

工具:Zeppelin

语法:PySpark(Apache Spark的Python API)、SparkSQL

数据库类型:Hive

一、相关方法

  • .createOrReplaceTempView()
    在PySpark中,createOrReplaceTempView是一个用于DataFrame的方法,它允许你将DataFrame的内容注册为一个临时的SQL视图,这样就可以在Spark SQL查询中引用这个视图,就像正常查询常规数仓表一样。
  • .toPandas()
    最终取数结果,以DataFrame形式输出。

二、实例

Zeppelin中编辑器与Jupyter Notebook类似,以代码块形式呈现,只是需要提前指定好代码块的语言,如:%pyspark

日常工作中,库存数据是常见的大数据量取数场景,下述代码以取 sku每天的库存 为例展开。

pyspark 复制代码
%pyspark
# 工具包及基础配置(视具体情况进行配置,非本文重点,可略过)
import pandas as pd
from pyspark import SparkConf
from pyspark import SparkContext
from pyspark.sql.types import *
from pyspark.sql import SparkSession
from pyspark.sql import SQLContext

spark_conf = SparkConf()
spark_conf.setMaster("local[*]")
spark_conf.setAppName("Test")
spark_conf.set("zeppelin.spark.sql.stacktrace", "true")
spark_conf.set('hive.exec.dynamic.partition.mode', 'nonstrict')
spark_conf.set("spark.sql.execution.arrow.enabled", "true")
spark_conf.set("spark.sql.execution.arrow.fallback.enabled", "true")
spark = SparkSession.builder.config(conf=spark_conf).config("zeppelin.spark.sql.stacktrace", "true").enableHiveSupport().getOrCreate()
pyspark 复制代码
%pyspark
# 配置取数参数(省事小技巧,避免重复编码,根据实际情况可配置多个参数)
## 开始、结束日期、品牌、......
start_date = '2024-01-01'
end_date = '2024-01-31'
brand = 'brand01'

# sql1:日期维表
tmp_dim_date = '''
	select date_string
	from edw.dim_date
	where 1=1
		and date_string >= '{start_date}'
		and date_string <= '{end_date}'
	'''.format(start_date=start_date, end_date=end_date)
tmp_dim_date = spark.sql(tmp_dim_date).createOrReplaceTempView('tmp_dim_date') # 创建日期临时表:tmp_dim_date

# sql2:商品维表
tmp_dim_sku = '''
	select brand_name,
		sku_sk
	from edw.dim_sku
	where 1=1
		and brand_name = '{brand}'
	group by 1, 2
	'''.format(brand=brand)
tmp_dim_sku = spark.sql(tmp_dim_sku).createOrReplaceTempView('tmp_dim_sku') # 创建sku临时表:tmp_dim_sku

# 最终sql:sku每天的库存
sku_stock = '''
	select tb0.date_string,
	    tb1.sku_sk,
	    sum(coalesce(tb1.stock_qty, 0)) stock_qty -- 库存量
	from tmp_dim_date tb0 -- 日期临时表
	left join edw.stock_zipper tb1 -- 库存拉链表
	    on tb1.date_begin <= tb0.date_string -- 开链时间
	    and tb1.date_end > tb0.date_string -- 闭链时间
	inner join tmp_dim_sku tb2 -- sku临时表
	    on tb1.sku_sk = tb2.sku_sk
	group by 1, 2
	'''
df_sku_stock = spark.sql(tmp_stock_zipper).toPandas()

# 删除临时视图(在不需要时及时做垃圾回收,减少资源占用)
spark.catalog.dropTempView("tmp_dim_stockorg")
spark.catalog.dropTempView("tmp_dim_sku")

至此,sku天维度库存数据已取出,实际应用常见可能比本案例复杂许多,故临时表的方法才更重要,一方面能理清楚取数代码的结构,一方面也提高代码性能。

三、总结

NULL

手动狗头

本文简短,也没总结的必要,那便在此祝各位新年快乐吧(bushi

相关推荐
JELEE.3 小时前
Django登录注册完整代码(图片、邮箱验证、加密)
前端·javascript·后端·python·django·bootstrap·jquery
孫治AllenSun4 小时前
【算法】图相关算法和递归
windows·python·算法
梦里不知身是客115 小时前
spark读取table中的数据【hive】
大数据·hive·spark
QX_hao5 小时前
【Go】--反射(reflect)的使用
开发语言·后端·golang
inferno5 小时前
Maven基础(二)
java·开发语言·maven
我是李武涯6 小时前
从`std::mutex`到`std::lock_guard`与`std::unique_lock`的演进之路
开发语言·c++
史不了7 小时前
静态交叉编译rust程序
开发语言·后端·rust
赞奇科技Xsuperzone7 小时前
DGX Spark 实战解析:模型选择与效率优化全指南
大数据·人工智能·gpt·spark·nvidia
读研的武7 小时前
DashGo零基础入门 纯Python的管理系统搭建
开发语言·python