清华大学与智谱AI重磅开源 GLM-4:掀起自然语言处理新革命

在强大的预训练基础上,GLM-4-9B 的中英文综合性能相比 ChatGLM3-6B 提升了 40%。尤其是中文对齐能力 AlignBench、指令遵从能力 IFeval,以及工程代码处理能力 Natural Code Bench 方面都实现了显著提升。

自 2023 年 3 月 14 日开源 ChatGLM-6B 以来,GLM 系列模型受到了广泛的关注和认可。特别是在 ChatGLM3-6B 开源之后,开发者对智谱 AI 推出的第四代模型充满了期待。而这一期待,随着 GLM-4-9B 的发布,终于得到了满足。

GLM-4-9B 的诞生

为了赋予小模型(10B 以下)更加强大的能力,GLM 技术团队经过近半年的探索,推出了这一全新的第四代 GLM 系列开源模型:GLM-4-9B。

创新预训练技术

在预训练过程中,我们引入大语言模型进行数据筛选,最终获得了 10T 高质量多语言数据。这一数据量是 ChatGLM3-6B 模型的 3 倍以上。此外,我们采用了 FP8 技术进行高效的预训练,相较于第三代模型,训练效率提高了 3.5 倍。考虑到用户的显存需求,GLM-4-9B 的参数规模从 6B 提升到了 9B。最终,我们将预训练计算量增加了 5 倍,从而在有限的显存条件下最大化性能。

卓越性能展示

综合以上的技术升级,GLM-4-9B 具备了更强大的推理性能、更加优异的上下文处理能力、多语言支持、多模态处理以及全工具 All Tools 调用等优势。

GLM-4-9B 系列包括多个版本:

  • 基础版本:GLM-4-9B(8K)
  • 对话版本:GLM-4-9B-Chat(128K)
  • 超长上下文版本:GLM-4-9B-Chat-1M(1M)
  • 多模态版本:GLM-4V-9B-Chat(8K)

GLM-4-9B 的强大能力

基础能力

在强大的预训练基础上,GLM-4-9B 的中英文综合性能相比 ChatGLM3-6B 提升了 40%。尤其是中文对齐能力 AlignBench、指令遵从能力 IFeval,以及工程代码处理能力 Natural Code Bench 方面都实现了显著提升。即使对比训练量更多的 Llama 3 8B 模型,GLM-4-9B 也丝毫不逊色,在英文表现上略有领先,而在中文学科领域,GLM-4-9B 更是提升了高达 50% [性能评测图表]。

长文本处理能力

图片

GLM-4-9B 模型的上下文长度从 128K 扩展到了 1M tokens,意味着能同时处理多达 200 万字的输入,相当于两本《红楼梦》或 125 篇学术论文的长度。GLM-4-9B-Chat-1M 模型在"大海捞针"实验中,成功展示了其出色的无损处理长文本输入的能力 [长文本实验图示]。

以下是两个展示长文本处理能力的 demo 视频案例:

  1. GLM-4-9B-Chat 模型: 输入 5 个 PDF 文件,总长度约为 128K,给出写一篇关于中国大模型发展的详细调研报告的 prompt。模型能够快速生成高质量的调研报告(视频未加速)。
  2. GLM-4-9B-Chat-1M 模型: 输入《三体》全集约 90 万字,要求模型给该小说写续集大纲的 prompt。模型合理规划并给出续写框架(视频加速 10 倍)。

多语言支持

GLM-4-9B 支持多达 26 种语言,包括汉语、英语、俄语等。我们将 tokenizer 的词表大小从 65K 扩展到 150K,编码效率提高了 30%。在多语言理解和生成任务中,GLM-4-9B-Chat 显著超越 Llama-3-8B-Instruct [多语言性能比较图]。

Function Call 能力

GLM-4-9B 的函数调用能力相较上一代提升了 40%,在 Berkeley Function-Calling Leaderboard 上,其 Function Call 能力与 GPT-4 不相上下 [函数调用性能对比图表]。

All Tools 全工具调用

"All Tools"能力即模型可以理解和使用各种外部工具(如代码执行、联网浏览、画图等)来辅助完成任务。在 1 月 16 日的 Zhipu DevDay 上,GLM-4 模型全线升级了 All Tools 能力,可以智能调用网页浏览器、代码解释器、CogView 等工具,完成复杂请求 [All Tools 任务图示]。

多模态处理

GLM-4V-9B 作为 GLM-4 基座的开源多模态模型,能够处理高分辨率输入,将视觉和文本数据直接混合进行训练,展现了显著的多模态处理效果,与 GPT-4V 性能相当。在识别和处理复杂多模态任务时,表现非常出色 [多模态应用实例图]。

图片

未来展望

GLM-4-9B 展现了其在多种任务中的强大性能,是自然语言处理领域的一大突破。无论是学术研究还是工业应用,GLM-4-9B 都将成为您的不二选择。

我们诚挚邀请您加入 GLM-4 的使用者行列,共同探索这款卓越模型带来的可能性:

  • GitHub 仓库
  • Hugging Face 模型页面
  • 魔搭社区
相关推荐
琅琊榜首202030 分钟前
AI生成脑洞付费短篇小说:从灵感触发到内容落地
大数据·人工智能
imbackneverdie39 分钟前
近年来,我一直在用的科研工具
人工智能·自然语言处理·aigc·论文·ai写作·学术·ai工具
roman_日积跬步-终至千里1 小时前
【计算机视觉-作业1】从图像到向量:kNN数据预处理完整流程
人工智能·计算机视觉
春日见1 小时前
自动驾驶规划控制决策知识点扫盲
linux·运维·服务器·人工智能·机器学习·自动驾驶
人工智能AI技术2 小时前
【Agent从入门到实践】43 接口封装:将Agent封装为API服务,供其他系统调用
人工智能·python
hjs_deeplearning2 小时前
文献阅读篇#14:自动驾驶中的基础模型:场景生成与场景分析综述(5)
人工智能·机器学习·自动驾驶
nju_spy2 小时前
离线强化学习(一)BCQ 批量限制 Q-learning
人工智能·强化学习·cvae·离线强化学习·双 q 学习·bcq·外推泛化误差
副露のmagic2 小时前
深度学习基础复健
人工智能·深度学习
番茄大王sc2 小时前
2026年科研AI工具深度测评(一):文献调研与综述生成领域,维普科创助手领跑学术严谨性
人工智能·深度学习·考研·学习方法·论文笔记