机器学习-课程整理及初步介绍

简介:

机器学习是人工智能的一个分支,它使计算机系统能够从经验中学习并改进其在特定任务上的表现,而无需进行明确的编程。机器学习涉及多种算法和统计模型,它们可以从数据中学习规律,并做出预测或决策。机器学习的应用非常广泛,包括图像识别、语音识别、推荐系统、自动驾驶汽车、医疗诊断等。

机器学习主要分为以下几类:

  1. 监督学习(Supervised Learning):算法从标记的训练数据中学习,以便对新的未标记数据进行预测。
  2. 无监督学习(Unsupervised Learning):算法从未标记的数据中学习,以发现数据中的结构或模式。
  3. 半监督学习(Semi-supervised Learning):结合了监督学习和无监督学习的特点,使用少量标记数据和大量未标记数据。
  4. 强化学习(Reinforcement Learning):算法通过与环境交互来学习如何做出决策,以最大化某种累积奖励。

机器学习的关键组成部分包括:

  • 数据预处理:清洗、规范化和转换原始数据,使其适合用于训练模型。
  • 特征选择:从数据中选择对模型预测最有用的特征。
  • 模型选择:选择适合特定问题和数据的机器学习算法。
  • 训练:使用训练数据来调整模型的参数。
  • 评估:评估模型在测试数据上的表现,以确定其准确性和泛化能力。
  • 优化:调整模型参数或算法设置,以提高模型性能。

学习课程推荐:

吴恩达教授的课程以其清晰的讲解、实用的示例和深入浅出的教学方法而受到广泛好评。如果你对机器学习感兴趣,他的课程是非常好的起点。

吴恩达《机器学习》基础课程

吴恩达《深度学习专项课程》

  • 这是一个更高级的课程系列,适合已经掌握了机器学习基础并希望深入学习深度学习的学生。
  • 课程使用Python编程语言和TensorFlow神经网络库,覆盖了深度学习的基础和高级主题。
  • 课程链接:Coursera - Deep Learning Specialization

吴恩达《机器学习与人工智能导论》

吴恩达《机器学习工程》

  • 这门课程教授学生如何将机器学习算法应用到实际问题中,包括数据准备、模型训练和部署等。

使用 Python 进行机器学习

课程链接:https://www.learndatasci.com/out/coursera-ibm-machine-learning-python/

  • 本课程非常适合想要使用 Python 学习机器学习的机器学习初学者。这是另一门针对初学者的机器学习课程。本课程从机器学习的基础知识开始。本课程使用Python来实现机器学习算法。本课程最好的部分是在每个机器学习算法之后给出的实用建议。在开始新算法之前,老师会向你详细介绍该算法的工作原理、优点、缺点以及该算法可以解决哪种类型的问题。

其他:

  1. 高阶机器学习专项课程
  2. 哥伦比亚大学的 Machine Learning 课程
  3. Hands-On Machine Learning with Scikit-Learn and TensorFlow
    • 书籍和课程结合,涉及使用Python的机器学习应用,适合希望通过实践学习的学习者。
相关推荐
修复bug3 分钟前
trae.ai 编辑器:前端开发者的智能效率革命
人工智能·编辑器·aigc
掘金安东尼6 分钟前
为什么GPT-4o可以生成吉卜力风格照片,原理是什么?
人工智能
机器鱼23 分钟前
1.2 基于卷积神经网络与SE注意力的轴承故障诊断
深度学习·机器学习·cnn
励志成为大佬的小杨25 分钟前
pytorch模型的进阶训练和性能优化
人工智能·pytorch·python
知舟不叙33 分钟前
OpenCV的基础操作
人工智能·opencv·计算机视觉
果冻人工智能1 小时前
打造 AI Agent 对于中产阶级来说就是场噩梦
人工智能
MediaTea1 小时前
AI 文生图:提示词撰写技巧与示例(ChatGPT-4o 篇)
人工智能
墨绿色的摆渡人1 小时前
用 pytorch 从零开始创建大语言模型(三):编码注意力机制
人工智能·pytorch·语言模型
zm-v-159304339862 小时前
ChatGPT 与 DeepSeek:学术科研的智能 “双引擎”
人工智能·chatgpt