机器学习-课程整理及初步介绍

简介:

机器学习是人工智能的一个分支,它使计算机系统能够从经验中学习并改进其在特定任务上的表现,而无需进行明确的编程。机器学习涉及多种算法和统计模型,它们可以从数据中学习规律,并做出预测或决策。机器学习的应用非常广泛,包括图像识别、语音识别、推荐系统、自动驾驶汽车、医疗诊断等。

机器学习主要分为以下几类:

  1. 监督学习(Supervised Learning):算法从标记的训练数据中学习,以便对新的未标记数据进行预测。
  2. 无监督学习(Unsupervised Learning):算法从未标记的数据中学习,以发现数据中的结构或模式。
  3. 半监督学习(Semi-supervised Learning):结合了监督学习和无监督学习的特点,使用少量标记数据和大量未标记数据。
  4. 强化学习(Reinforcement Learning):算法通过与环境交互来学习如何做出决策,以最大化某种累积奖励。

机器学习的关键组成部分包括:

  • 数据预处理:清洗、规范化和转换原始数据,使其适合用于训练模型。
  • 特征选择:从数据中选择对模型预测最有用的特征。
  • 模型选择:选择适合特定问题和数据的机器学习算法。
  • 训练:使用训练数据来调整模型的参数。
  • 评估:评估模型在测试数据上的表现,以确定其准确性和泛化能力。
  • 优化:调整模型参数或算法设置,以提高模型性能。

学习课程推荐:

吴恩达教授的课程以其清晰的讲解、实用的示例和深入浅出的教学方法而受到广泛好评。如果你对机器学习感兴趣,他的课程是非常好的起点。

吴恩达《机器学习》基础课程

吴恩达《深度学习专项课程》

  • 这是一个更高级的课程系列,适合已经掌握了机器学习基础并希望深入学习深度学习的学生。
  • 课程使用Python编程语言和TensorFlow神经网络库,覆盖了深度学习的基础和高级主题。
  • 课程链接:Coursera - Deep Learning Specialization

吴恩达《机器学习与人工智能导论》

吴恩达《机器学习工程》

  • 这门课程教授学生如何将机器学习算法应用到实际问题中,包括数据准备、模型训练和部署等。

使用 Python 进行机器学习

课程链接:https://www.learndatasci.com/out/coursera-ibm-machine-learning-python/

  • 本课程非常适合想要使用 Python 学习机器学习的机器学习初学者。这是另一门针对初学者的机器学习课程。本课程从机器学习的基础知识开始。本课程使用Python来实现机器学习算法。本课程最好的部分是在每个机器学习算法之后给出的实用建议。在开始新算法之前,老师会向你详细介绍该算法的工作原理、优点、缺点以及该算法可以解决哪种类型的问题。

其他:

  1. 高阶机器学习专项课程
  2. 哥伦比亚大学的 Machine Learning 课程
  3. Hands-On Machine Learning with Scikit-Learn and TensorFlow
    • 书籍和课程结合,涉及使用Python的机器学习应用,适合希望通过实践学习的学习者。
相关推荐
沉下心来学鲁班11 分钟前
复现LLM:带你从零认识语言模型
人工智能·语言模型
数据猎手小k11 分钟前
AndroidLab:一个系统化的Android代理框架,包含操作环境和可复现的基准测试,支持大型语言模型和多模态模型。
android·人工智能·机器学习·语言模型
YRr YRr20 分钟前
深度学习:循环神经网络(RNN)详解
人工智能·rnn·深度学习
sp_fyf_202432 分钟前
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-11-01
人工智能·深度学习·神经网络·算法·机器学习·语言模型·数据挖掘
多吃轻食36 分钟前
大模型微调技术 --> 脉络
人工智能·深度学习·神经网络·自然语言处理·embedding
北京搜维尔科技有限公司1 小时前
搜维尔科技:【应用】Xsens在荷兰车辆管理局人体工程学评估中的应用
人工智能·安全
说私域1 小时前
基于开源 AI 智能名片 S2B2C 商城小程序的视频号交易小程序优化研究
人工智能·小程序·零售
YRr YRr1 小时前
深度学习:Transformer Decoder详解
人工智能·深度学习·transformer
知来者逆1 小时前
研究大语言模型在心理保健智能顾问的有效性和挑战
人工智能·神经网络·机器学习·语言模型·自然语言处理
云起无垠2 小时前
技术分享 | 大语言模型赋能软件测试:开启智能软件安全新时代
人工智能·安全·语言模型