计算机视觉全系列实战教程:(九)图像滤波操作

1.图像滤波的概述

(1)Why (为什么要进行图像滤波)

  • 去噪:去除图像在获取、传输等过程中的各种噪音干扰
  • 提取特征:使用特定的图像滤波器提取图像特定特征

(2)What (什么是图像滤波)

使用滤波核对图像进行卷积运算或非线性运算,以达到去噪或提取特征的目的的图像处理技术

2.线性滤波

What:对各像素灰度进行简单处理(乘以一个权重),最后求和

(1)方框滤波

归一化方框滤波器和均值滤波器的核基本一致,主要区别是:是否进行归一化处理,如果不进行归一化处理 ,则表示的是方框滤波

在opencv中的滤波算法如下:

cpp 复制代码
void cv::boxFilter(cv::Mat &imSrc, //输入图像
			  cv::Mat &imDst, //输出图像
			  int depth, //图像深度
			  cv::Size ssize, //方框滤波器的尺寸
			  cv::Point(-1,-1), //默认以中心点为基准
			  bool normalize = true, //是否进行归一化处理
			  int borderType = 4
			  );

(2)均值滤波

均值滤波器的核的元素全是1,并进行了归一化 操作:即每个元素都会除以核的总数

cpp 复制代码
void cv::blur(cv::Mat &imSrc, //输入图像
			  cv::Mat &imDst,  //输出图像
			  cv::Size ksize,  //滤波核的尺寸
			  Point anchor=Point(-1,-1),  //默认以中心点为基准
			  int borderType=BORDER_DEFA  //图像外部像素的边界模式,一般默认值即可
			  );

(3)高斯滤波

形状类似于概率论中的高斯分布模型(正态分布模型)

cpp 复制代码
void cv::GaussianBlur(
	cv::Mat &imSrc, //输入图像
	cv::Mat &imDst, //输出图像
	cv::Size ksize, //高斯滤波核的尺寸
	double sigmaX, //高斯核函数在X方向的标准偏差
	double sigmaY = 0, //高斯核函数在Y方向的标准偏差
	int borderType = BORDER_DEFAULT
	);

3.非线性滤波

(1)中值滤波

用像素点领域的灰度值来代替该像素点的灰度值,可以去除最大值和最小值,针对椒盐噪声效果很好

cpp 复制代码
void cv::medianBlur(
	cv::Mat &imSrc, //输入图像
	cv::Mat &imDst, //输出图像
	int ksize  //中值滤波核的尺寸
	);

(2)双边滤波

双边滤波能够在保持边缘的前提下实现降噪的目的,缺点是效率较慢
基本原理:考虑两个权重因素来组成卷积核

  • 空域权重:两点之间的距离,距离越远权重越低
  • 值域权重:两点之间的像素值相似程度,越相似权重越大。
cpp 复制代码
void cv::bilalteralFilter(
	cv::Mat &imSrc, //输入图像
	cv::Mat &imDst,  //输出图像
	double sigmaColor, //值域的标准差
	double sigmaSpace,  //空间域的标准差
	int borderType = BORDER_DEFAULT
	);
相关推荐
猫天意几秒前
【深度学习小课堂】| torch | 升维打击还是原位拼接?深度解码 PyTorch 中 stack 与 cat 的几何奥义
开发语言·人工智能·pytorch·深度学习·神经网络·yolo·机器学习
cyyt3 分钟前
深度学习周报(1.12~1.18)
人工智能·算法·机器学习
摸鱼仙人~18 分钟前
深度对比:Prompt Tuning、P-tuning 与 Prefix Tuning 有何不同?
人工智能·prompt
塔能物联运维38 分钟前
隧道照明“智能进化”:PLC 通信 + AI 调光守护夜间通行生命线
大数据·人工智能
瑶光守护者39 分钟前
【AI经典论文解读】《Denoising Diffusion Implicit Models(去噪扩散隐式模型)》论文深度解读
人工智能
wwwzhouhui42 分钟前
2026年1月18日-Obsidian + AI,笔记效率提升10倍!一键生成Canvas和小红书风格笔记
人工智能·obsidian·skills
我星期八休息1 小时前
MySQL数据可视化实战指南
数据库·人工智能·mysql·算法·信息可视化
wuk9981 小时前
基于遗传算法优化BP神经网络实现非线性函数拟合
人工智能·深度学习·神经网络
码农三叔1 小时前
(1-3)人形机器人的发展历史、趋势与应用场景:人形机器人关键技术体系总览
人工智能·机器人
白日做梦Q1 小时前
深度学习中的正则化技术全景:从Dropout到权重衰减的优化逻辑
人工智能·深度学习