计算机视觉全系列实战教程:(九)图像滤波操作

1.图像滤波的概述

(1)Why (为什么要进行图像滤波)

  • 去噪:去除图像在获取、传输等过程中的各种噪音干扰
  • 提取特征:使用特定的图像滤波器提取图像特定特征

(2)What (什么是图像滤波)

使用滤波核对图像进行卷积运算或非线性运算,以达到去噪或提取特征的目的的图像处理技术

2.线性滤波

What:对各像素灰度进行简单处理(乘以一个权重),最后求和

(1)方框滤波

归一化方框滤波器和均值滤波器的核基本一致,主要区别是:是否进行归一化处理,如果不进行归一化处理 ,则表示的是方框滤波

在opencv中的滤波算法如下:

cpp 复制代码
void cv::boxFilter(cv::Mat &imSrc, //输入图像
			  cv::Mat &imDst, //输出图像
			  int depth, //图像深度
			  cv::Size ssize, //方框滤波器的尺寸
			  cv::Point(-1,-1), //默认以中心点为基准
			  bool normalize = true, //是否进行归一化处理
			  int borderType = 4
			  );

(2)均值滤波

均值滤波器的核的元素全是1,并进行了归一化 操作:即每个元素都会除以核的总数

cpp 复制代码
void cv::blur(cv::Mat &imSrc, //输入图像
			  cv::Mat &imDst,  //输出图像
			  cv::Size ksize,  //滤波核的尺寸
			  Point anchor=Point(-1,-1),  //默认以中心点为基准
			  int borderType=BORDER_DEFA  //图像外部像素的边界模式,一般默认值即可
			  );

(3)高斯滤波

形状类似于概率论中的高斯分布模型(正态分布模型)

cpp 复制代码
void cv::GaussianBlur(
	cv::Mat &imSrc, //输入图像
	cv::Mat &imDst, //输出图像
	cv::Size ksize, //高斯滤波核的尺寸
	double sigmaX, //高斯核函数在X方向的标准偏差
	double sigmaY = 0, //高斯核函数在Y方向的标准偏差
	int borderType = BORDER_DEFAULT
	);

3.非线性滤波

(1)中值滤波

用像素点领域的灰度值来代替该像素点的灰度值,可以去除最大值和最小值,针对椒盐噪声效果很好

cpp 复制代码
void cv::medianBlur(
	cv::Mat &imSrc, //输入图像
	cv::Mat &imDst, //输出图像
	int ksize  //中值滤波核的尺寸
	);

(2)双边滤波

双边滤波能够在保持边缘的前提下实现降噪的目的,缺点是效率较慢
基本原理:考虑两个权重因素来组成卷积核

  • 空域权重:两点之间的距离,距离越远权重越低
  • 值域权重:两点之间的像素值相似程度,越相似权重越大。
cpp 复制代码
void cv::bilalteralFilter(
	cv::Mat &imSrc, //输入图像
	cv::Mat &imDst,  //输出图像
	double sigmaColor, //值域的标准差
	double sigmaSpace,  //空间域的标准差
	int borderType = BORDER_DEFAULT
	);
相关推荐
Codebee4 分钟前
SuperAgent核心术语全解析:企业智能化转型必备指南
人工智能
AI科技星6 分钟前
光子的几何起源与量子本质:一个源于时空本底运动的统一模型
服务器·人工智能·线性代数·算法·机器学习
创客匠人老蒋10 分钟前
静水流深:在业务深处,看见AI的真实力量
人工智能·创始人ip·创客匠人
杭州泽沃电子科技有限公司10 分钟前
充电安全防线:以实时在线监测破解电动自行车火灾困局
人工智能·在线监测·智能监测
阿坤带你走近大数据40 分钟前
Rag与RagFlow的区别
人工智能·知识图谱
2501_9059673340 分钟前
双目视觉:CREStereo论文超详细解读
人工智能·python·计算机视觉·双目视觉
狗狗学不会42 分钟前
Pybind11 封装 RK3588 全流程服务:Python 写逻辑,C++ 跑并发,性能起飞!
c++·人工智能·python·目标检测
好好沉淀1 小时前
Spring AI Alibaba
java·人工智能·spring
陈天伟教授1 小时前
人工智能应用-机器视觉:AI 美颜 02.生成对抗网络
人工智能·神经网络·生成对抗网络