Python遥感影像叠加分析:基于一景数据提取另一数据

本文介绍基于PythonGDAL 模块,实现基于一景栅格影像,对另一景栅格影像的像元数值 加以叠加提取的方法。

本文期望实现的需求为:现有一景表示6种不同植被类型.tif格式栅格数据,以及另一景与前述栅格数据同区域的、表示植被参数.tif格式栅格数据;我们希望基于前者中的植被类型数据,分别提取6种不同植被类型的植被参数数值。这里需要注意,两景栅格影像的行数、列数也都是一致的。

了解了具体需求后,我们即可开始代码的实践;本文用到的具体代码如下所示。

python 复制代码
# -*- coding: utf-8 -*-
"""
Created on Thu Dec  1 16:56:26 2022

@author: fkxxgis
"""

from osgeo import gdal

vt_file_path = "E:/LC_M/data/LC.tif"
lcc_file_path = "E:/LC_M/data/LC_Clip.tif"

vt_raster = gdal.Open(vt_file_path)
vt_array = vt_raster.ReadAsArray()
lcc_raster = gdal.Open(lcc_file_path)
lcc_array = lcc_raster.ReadAsArray()

raster_row, raster_col = vt_array.shape
li_1, li_2, li_3, li_4, li_5, li_6 = [ [] for i in range(6)]

for i in range(raster_row):
    for j in range(raster_col):
        if vt_array[i][j] == 1 and lcc_array[i][j] != 0:
            li_1.append(lcc_array[i][j])
        elif vt_array[i][j] == 2 and lcc_array[i][j] != 0:
            li_2.append(lcc_array[i][j])
        elif vt_array[i][j] == 3 and lcc_array[i][j] != 0:
            li_3.append(lcc_array[i][j])
        elif vt_array[i][j] == 4 and lcc_array[i][j] != 0:
            li_4.append(lcc_array[i][j])
        elif vt_array[i][j] == 5 and lcc_array[i][j] != 0:
            li_5.append(lcc_array[i][j])
        elif vt_array[i][j] == 6 and lcc_array[i][j] != 0:
            li_6.append(lcc_array[i][j])

其中,vt_file_path为表示植被类型的栅格数据,lcc_file_path为表示植被参数的栅格数据。

代码的整体思路其实也非常简单,首先通过gdal.Open()函数与.ReadAsArray()函数,分别读取两个栅格数据,并将两个栅格数据中的像元数值信息转换为数组格式;随后,因为表示不同植被类型.tif格式栅格数据共有6种不同的像元数值,因此我们通过[] for i in range(6)这句代码,批量创建6个空的列表,用于存放6种不同植被类型分别对应的植被参数数值;接下来,同时遍历两个栅格数据,并基于表示不同植被类型.tif格式栅格数据的像元数值,将表示植被参数.tif格式栅格数据的像元数值依次提取、放入不同的列表中。

这里有一点需要注意,因为在表示植被参数.tif格式栅格数据中0为无效值,因此在提取时,加了一个是否为0的判断;这一点大家在实际应用时结合自己的需求加以修改即可。

通过上述代码,我们即可将6种不同植被类型分别对应的植被参数数值提取出来,并存放于不同的列表中;随后即可基于不同列表中的数据加以各项空间分析。

相关推荐
黑客-雨4 分钟前
从零开始:如何用Python训练一个AI模型(超详细教程)非常详细收藏我这一篇就够了!
开发语言·人工智能·python·大模型·ai产品经理·大模型学习·大模型入门
孤独且没人爱的纸鹤18 分钟前
【机器学习】深入无监督学习分裂型层次聚类的原理、算法结构与数学基础全方位解读,深度揭示其如何在数据空间中构建层次化聚类结构
人工智能·python·深度学习·机器学习·支持向量机·ai·聚类
l1x1n021 分钟前
No.35 笔记 | Python学习之旅:基础语法与实践作业总结
笔记·python·学习
是Dream呀1 小时前
Python从0到100(八十五):神经网络-使用迁移学习完成猫狗分类
python·神经网络·迁移学习
小林熬夜学编程1 小时前
【Python】第三弹---编程基础进阶:掌握输入输出与运算符的全面指南
开发语言·python·算法
hunter2062063 小时前
用opencv生成视频流,然后用rtsp进行拉流显示
人工智能·python·opencv
Johaden5 小时前
EXCEL+Python搞定数据处理(第一部分:Python入门-第2章:开发环境)
开发语言·vscode·python·conda·excel
小虎牙^O^6 小时前
2024春秋杯密码题第一、二天WP
python·密码学
梦魇梦狸º7 小时前
mac 配置 python 环境变量
chrome·python·macos
查理零世7 小时前
算法竞赛之差分进阶——等差数列差分 python
python·算法·差分