CV预测:快速使用LeNet-5卷积神经网络

AI预测相关目录

AI预测流程,包括ETL、算法策略、算法模型、模型评估、可视化等相关内容
最好有基础的python算法预测经验

  1. EEMD策略及踩坑
  2. VMD-CNN-LSTM时序预测
  3. 对双向LSTM等模型添加自注意力机制
  4. K折叠交叉验证
  5. optuna超参数优化框架
  6. 多任务学习-模型融合策略
  7. Transformer模型及Paddle实现
  8. 迁移学习在预测任务上的tensoflow2.0实现
  9. holt提取时序序列特征
  10. TCN时序预测及tf实现
  11. 注意力机制/多头注意力机制及其tensorflow实现
  12. 一文解析AI预测数据工程
  13. FITS:一个轻量级而又功能强大的时间序列分析模型
  14. DLinear:未来预测聚合历史信息的最简单网络
  15. LightGBM:更好更快地用于工业实践集成学习算法
  16. 面向多特征的AI预测指南
  17. 大模型时序预测初步调研【20240506】
  18. Time-LLM :超越了现有时间序列预测模型的学习器
  19. CV预测:快速使用LeNet-5卷积神经网络

文章目录


LeNet-5卷积神经网络

背景

在1990年代,亚恩乐村(Yannlecun)等人提出了用于手写数字和机器打印字符识别的神经网络,被命名为勒内-5(lecun,博图,本吉奥,&哈夫纳,1998)。勒内一5的提出,使得卷积神经网络在当时能够成功被商用,广泛应用在邮政编码、支票号码识别等任务中。

简介

LeNet网络逐层结构:

图片输入:32x32x1第一层:卷积核(6个,5x5x1,步长:1),输出:28x28x6

最大池化层:卷积核(2x2,步长:2),输出:14x14x6

第二层:卷积核(16个,5x5x6,步长:1),输出:10x10x16

最大池化层:卷积核(2x2,步长:2),输出:5x5x16

拉直后输出:5 x5x16=400

全连接层1:120个节点

全连接层2:84个节点

输出层:10个节点

注:在进行卷积运算时,没有对输入进行填充。因此第一层的输出size=32-5+1=28,第二层的输出size=14-5+1=10

代码

python 复制代码
import tensorflow as tf
from tensorflow.keras import datasets, layers, optimizers, Sequential, metrics

# 1. 数据集准备
(x, y), (x_val, y_val) = datasets.mnist.load_data()
x = tf.convert_to_tensor(x, dtype=tf.float32) / 255.
x = tf.expand_dims(x, -1)  # 调整形状为(28, 28, 1)
y = tf.convert_to_tensor(y, dtype=tf.int32)
x_val = tf.convert_to_tensor(x_val, dtype=tf.float32) / 255.
x_val = tf.expand_dims(x_val, -1)
y_val = tf.convert_to_tensor(y_val, dtype=tf.int32)

train_dataset = tf.data.Dataset.from_tensor_slices((x, y)).batch(32)

# 2. 搭建网络
network = Sequential([
    layers.Conv2D(6, kernel_size=3, activation='relu'),
    layers.MaxPooling2D(pool_size=2, strides=2),
    layers.Conv2D(16, kernel_size=3, activation='relu'),
    layers.MaxPooling2D(pool_size=2, strides=2),
    layers.Flatten(),
    layers.Dense(120, activation='relu'),
    layers.Dense(84, activation='relu'),
    layers.Dense(10, activation='softmax')
])

network.build(input_shape=(None, 28, 28, 1))
network.summary()

# 3. 模型编译
optimizer = optimizers.Adam()
loss_fn = losses.SparseCategoricalCrossentropy(from_logits=True)
network.compile(optimizer=optimizer, loss=loss_fn, metrics=[metrics.Accuracy()])

# 4. 模型训练
epochs = 10
for epoch in range(epochs):
    acc_meter = metrics.Accuracy()
    for step, (x_batch, y_batch) in enumerate(train_dataset):
        with tf.GradientTape() as tape:
            out = network(x_batch)
            loss = loss_fn(y_batch, out)
        grads = tape.gradient(loss, network.trainable_variables)
        optimizer.apply_gradients(zip(grads, network.trainable_variables))
        acc_meter.update_state(y_batch, tf.argmax(out, axis=1))

    # 打印每个epoch的结果
    print(f'Epoch {epoch + 1}, Loss: {loss.numpy()}, Accuracy: {acc_meter.result().numpy()}')
    acc_meter.reset_states()
相关推荐
咚咚王者2 分钟前
人工智能之数据分析 numpy:第十二章 数据持久化
人工智能·数据分析·numpy
沛沛老爹7 分钟前
AI应用入门之LangChain中SerpAPI、LLM-Math等Tools的集成方法实践
人工智能·langchain·llm·ai入门·serpapi
roman_日积跬步-终至千里34 分钟前
【强化学习基础(5)】策略搜索与学徒学习:从专家行为中学习加速学习过程
人工智能
杭州泽沃电子科技有限公司2 小时前
在线监测:为医药精细化工奠定安全、合规与质量基石
运维·人工智能·物联网·安全·智能监测
GIS数据转换器2 小时前
GIS+大模型助力安全风险精细化管理
大数据·网络·人工智能·安全·无人机
OJAC1113 小时前
AI跨界潮:金融精英与应届生正涌入人工智能领域
人工智能·金融
机器之心3 小时前
Adam的稳+Muon的快?华为诺亚开源ROOT破解大模型训练「既要又要」的两难困境
人工智能·openai
可观测性用观测云3 小时前
观测云 MCP Server 接入和使用最佳实践
人工智能
掘金一周3 小时前
大部分人都错了!这才是chrome插件多脚本通信的正确姿势 | 掘金一周 11.27
前端·人工智能·后端
xier_ran3 小时前
深度学习:生成对抗网络(GAN)详解
人工智能·深度学习·机器学习·gan