CV预测:快速使用LeNet-5卷积神经网络

AI预测相关目录

AI预测流程,包括ETL、算法策略、算法模型、模型评估、可视化等相关内容
最好有基础的python算法预测经验

  1. EEMD策略及踩坑
  2. VMD-CNN-LSTM时序预测
  3. 对双向LSTM等模型添加自注意力机制
  4. K折叠交叉验证
  5. optuna超参数优化框架
  6. 多任务学习-模型融合策略
  7. Transformer模型及Paddle实现
  8. 迁移学习在预测任务上的tensoflow2.0实现
  9. holt提取时序序列特征
  10. TCN时序预测及tf实现
  11. 注意力机制/多头注意力机制及其tensorflow实现
  12. 一文解析AI预测数据工程
  13. FITS:一个轻量级而又功能强大的时间序列分析模型
  14. DLinear:未来预测聚合历史信息的最简单网络
  15. LightGBM:更好更快地用于工业实践集成学习算法
  16. 面向多特征的AI预测指南
  17. 大模型时序预测初步调研【20240506】
  18. Time-LLM :超越了现有时间序列预测模型的学习器
  19. CV预测:快速使用LeNet-5卷积神经网络

文章目录


LeNet-5卷积神经网络

背景

在1990年代,亚恩乐村(Yannlecun)等人提出了用于手写数字和机器打印字符识别的神经网络,被命名为勒内-5(lecun,博图,本吉奥,&哈夫纳,1998)。勒内一5的提出,使得卷积神经网络在当时能够成功被商用,广泛应用在邮政编码、支票号码识别等任务中。

简介

LeNet网络逐层结构:

图片输入:32x32x1第一层:卷积核(6个,5x5x1,步长:1),输出:28x28x6

最大池化层:卷积核(2x2,步长:2),输出:14x14x6

第二层:卷积核(16个,5x5x6,步长:1),输出:10x10x16

最大池化层:卷积核(2x2,步长:2),输出:5x5x16

拉直后输出:5 x5x16=400

全连接层1:120个节点

全连接层2:84个节点

输出层:10个节点

注:在进行卷积运算时,没有对输入进行填充。因此第一层的输出size=32-5+1=28,第二层的输出size=14-5+1=10

代码

python 复制代码
import tensorflow as tf
from tensorflow.keras import datasets, layers, optimizers, Sequential, metrics

# 1. 数据集准备
(x, y), (x_val, y_val) = datasets.mnist.load_data()
x = tf.convert_to_tensor(x, dtype=tf.float32) / 255.
x = tf.expand_dims(x, -1)  # 调整形状为(28, 28, 1)
y = tf.convert_to_tensor(y, dtype=tf.int32)
x_val = tf.convert_to_tensor(x_val, dtype=tf.float32) / 255.
x_val = tf.expand_dims(x_val, -1)
y_val = tf.convert_to_tensor(y_val, dtype=tf.int32)

train_dataset = tf.data.Dataset.from_tensor_slices((x, y)).batch(32)

# 2. 搭建网络
network = Sequential([
    layers.Conv2D(6, kernel_size=3, activation='relu'),
    layers.MaxPooling2D(pool_size=2, strides=2),
    layers.Conv2D(16, kernel_size=3, activation='relu'),
    layers.MaxPooling2D(pool_size=2, strides=2),
    layers.Flatten(),
    layers.Dense(120, activation='relu'),
    layers.Dense(84, activation='relu'),
    layers.Dense(10, activation='softmax')
])

network.build(input_shape=(None, 28, 28, 1))
network.summary()

# 3. 模型编译
optimizer = optimizers.Adam()
loss_fn = losses.SparseCategoricalCrossentropy(from_logits=True)
network.compile(optimizer=optimizer, loss=loss_fn, metrics=[metrics.Accuracy()])

# 4. 模型训练
epochs = 10
for epoch in range(epochs):
    acc_meter = metrics.Accuracy()
    for step, (x_batch, y_batch) in enumerate(train_dataset):
        with tf.GradientTape() as tape:
            out = network(x_batch)
            loss = loss_fn(y_batch, out)
        grads = tape.gradient(loss, network.trainable_variables)
        optimizer.apply_gradients(zip(grads, network.trainable_variables))
        acc_meter.update_state(y_batch, tf.argmax(out, axis=1))

    # 打印每个epoch的结果
    print(f'Epoch {epoch + 1}, Loss: {loss.numpy()}, Accuracy: {acc_meter.result().numpy()}')
    acc_meter.reset_states()
相关推荐
Web3&Basketball7 分钟前
Dify实战:调试技巧深度解析
人工智能
沃恩智慧14 分钟前
超越CNN和Transformer!Mamba结合多模态统领图像任务!
人工智能·cnn·transformer
MYZR11 小时前
手持终端的技术演进:从移动计算到智能物联
人工智能·智能家居·核心板·ssd2351
桂花饼1 小时前
Sora 2:当AI视频“以假乱真”,内容创作进入新纪元,体验AI创作能力
人工智能·aigc·多模态学习·ai视频生成·sora 2·视频生成api
x_lrong1 小时前
个人AI环境快速搭建
人工智能·笔记
陆业聪1 小时前
AI智能体的未来:从语言泛化到交互革命
人工智能·交互
siliconstorm.ai1 小时前
阿里下场造“机器人”:从通义千问到具身智能,中国AI正走向“实体化”阶段
人工智能·自然语言处理·chatgpt·机器人·云计算
扫地的小何尚2 小时前
Isaac Lab 2.3深度解析:全身控制与增强遥操作如何重塑机器人学习
arm开发·人工智能·学习·自然语言处理·机器人·gpu·nvidia
元基时代2 小时前
视频图文矩阵发布系统企业
大数据·人工智能·矩阵
岁月宁静2 小时前
AI聊天系统 实战:打造优雅的聊天记录复制与批量下载功能
前端·vue.js·人工智能