目标检测数据集与制作

目标检测数据集与制作

VOC数据集

PASCAL VOC挑战赛(ThePASCALVisualObjectClasses)是一个世界级的计算机视觉挑战赛,PASCAL全称:Pattern Analysis,Statical Modeling and Computational Learning,是一个由欧盟资助的网络组织。PASCALVOc挑战赛主要包括以下几类:图像分类(Object Classification);目标检测(Object Detection),目标分割(Object Segmentation),动作识别(ActionClassification)等。

整个PASCAL VOC数据集有20个类别的信息。类别信息如下所示:

在学习VOC数据集之前我们需要了解voc数据集的结构信息

我们使用我之前Faster Rcnn项目中使用的VOC数据集对各个部分进行说明

  • Annotations:里面存放着所有图像的标注信息(使用的是xml文件来进行表示)

    复制代码
     <truncated>1</truncated>表示是否被截断。
     <difficult>0</difficult> 检测的难易程度
     <object>     代表有两个目标
      	<name>dog</name>
      	<pose>Left</pose>
      	<truncated>1</truncated>
      	<difficult>0</difficult>
      	<bndbox>
      		<xmin>48</xmin>
      		<ymin>240</ymin>
      		<xmax>195</xmax>
      		<ymax>371</ymax>
      	</bndbox>
      </object>
      <object>
      	<name>person</name>
      	<pose>Left</pose>
      	<truncated>1</truncated>
      	<difficult>0</difficult>
      	<bndbox>
      		<xmin>8</xmin>
      		<ymin>12</ymin>
      		<xmax>352</xmax>
      		<ymax>498</ymax>
      	</bndbox>
      </object>

Main里面包括了一些txt文件的信息:依次主要包括了下面的四个文件信息。

  • 测试集
  • 训练集
  • 训练集+验证集
  • 验证集

标注数据集

之前我使用的labelme生成的是json文件,这次使用labelimg来生成和voc数据集相同的xml文件信息。

使用流程:

  • 打开项目文件夹->data->predefined_classes.txt修改标注类别信息
  • 打开软件设置图像文件所在目录,以及标注文件保存目录
  • 标注图像,并保存
  • 若要修改源代码在项目的libs->labelFile.py文件中修改

先创建下面格式的文件夹信息

  1. 下载并使用labelIMG

pip install labelIMG

  1. 将目录切换到刚刚创建好的文件夹那里
  2. 使用命令打开标注软件进行标注信息。

labelIMG ./image ./class

  1. 设置标注文件的保存位置。
  1. 开始进行目标检测数据集的标注完成相关的操作步骤。
相关推荐
5Gcamera4 小时前
4G body camera BC310/BC310D user manual
人工智能·边缘计算·智能安全帽·执法记录仪·smarteye
爱喝可乐的老王5 小时前
机器学习中常用交叉验证总结
人工智能·机器学习
公链开发6 小时前
2026 Web3机构级风口:RWA Tokenization + ZK隐私系统定制开发全解析
人工智能·web3·区块链
wyw00006 小时前
目标检测之YOLO
人工智能·yolo·目标检测
发哥来了6 小时前
AI视频生成企业级方案选型指南:2025年核心能力与成本维度深度对比
大数据·人工智能
_codemonster6 小时前
强化学习入门到实战系列(四)马尔科夫决策过程
人工智能
北邮刘老师6 小时前
智能体治理:人工智能时代信息化系统的全新挑战与课题
大数据·人工智能·算法·机器学习·智能体互联网
laplace01236 小时前
第七章 构建自己的agent智能体框架
网络·人工智能·microsoft·agent
诗词在线6 小时前
中国古代诗词名句按主题分类有哪些?(爱国 / 思乡 / 送别)
人工智能·python·分类·数据挖掘
高锰酸钾_6 小时前
机器学习-L1正则化和L2正则化解决过拟合问题
人工智能·python·机器学习