目标检测数据集与制作

目标检测数据集与制作

VOC数据集

PASCAL VOC挑战赛(ThePASCALVisualObjectClasses)是一个世界级的计算机视觉挑战赛,PASCAL全称:Pattern Analysis,Statical Modeling and Computational Learning,是一个由欧盟资助的网络组织。PASCALVOc挑战赛主要包括以下几类:图像分类(Object Classification);目标检测(Object Detection),目标分割(Object Segmentation),动作识别(ActionClassification)等。

整个PASCAL VOC数据集有20个类别的信息。类别信息如下所示:

在学习VOC数据集之前我们需要了解voc数据集的结构信息

我们使用我之前Faster Rcnn项目中使用的VOC数据集对各个部分进行说明

  • Annotations:里面存放着所有图像的标注信息(使用的是xml文件来进行表示)

    复制代码
     <truncated>1</truncated>表示是否被截断。
     <difficult>0</difficult> 检测的难易程度
     <object>     代表有两个目标
      	<name>dog</name>
      	<pose>Left</pose>
      	<truncated>1</truncated>
      	<difficult>0</difficult>
      	<bndbox>
      		<xmin>48</xmin>
      		<ymin>240</ymin>
      		<xmax>195</xmax>
      		<ymax>371</ymax>
      	</bndbox>
      </object>
      <object>
      	<name>person</name>
      	<pose>Left</pose>
      	<truncated>1</truncated>
      	<difficult>0</difficult>
      	<bndbox>
      		<xmin>8</xmin>
      		<ymin>12</ymin>
      		<xmax>352</xmax>
      		<ymax>498</ymax>
      	</bndbox>
      </object>

Main里面包括了一些txt文件的信息:依次主要包括了下面的四个文件信息。

  • 测试集
  • 训练集
  • 训练集+验证集
  • 验证集

标注数据集

之前我使用的labelme生成的是json文件,这次使用labelimg来生成和voc数据集相同的xml文件信息。

使用流程:

  • 打开项目文件夹->data->predefined_classes.txt修改标注类别信息
  • 打开软件设置图像文件所在目录,以及标注文件保存目录
  • 标注图像,并保存
  • 若要修改源代码在项目的libs->labelFile.py文件中修改

先创建下面格式的文件夹信息

  1. 下载并使用labelIMG

pip install labelIMG

  1. 将目录切换到刚刚创建好的文件夹那里
  2. 使用命令打开标注软件进行标注信息。

labelIMG ./image ./class

  1. 设置标注文件的保存位置。
  1. 开始进行目标检测数据集的标注完成相关的操作步骤。
相关推荐
hundaxxx25 分钟前
自演化大语言模型的技术背景
人工智能
数智顾问1 小时前
【73页PPT】美的简单高效的管理逻辑(附下载方式)
大数据·人工智能·产品运营
love530love1 小时前
【保姆级教程】阿里 Wan2.1-T2V-14B 模型本地部署全流程:从环境配置到视频生成(附避坑指南)
人工智能·windows·python·开源·大模型·github·音视频
木头左1 小时前
结合机器学习的Backtrader跨市场交易策略研究
人工智能·机器学习·kotlin
Coovally AI模型快速验证1 小时前
3D目标跟踪重磅突破!TrackAny3D实现「类别无关」统一建模,多项SOTA达成!
人工智能·yolo·机器学习·3d·目标跟踪·无人机·cocos2d
研梦非凡1 小时前
CVPR 2025|基于粗略边界框监督的3D实例分割
人工智能·计算机网络·计算机视觉·3d
MiaoChuAI1 小时前
秒出PPT vs 豆包AI PPT:实测哪款更好用?
人工智能·powerpoint
fsnine2 小时前
深度学习——残差神经网路
人工智能·深度学习
和鲸社区2 小时前
《斯坦福CS336》作业1开源,从0手搓大模型|代码复现+免环境配置
人工智能·python·深度学习·计算机视觉·语言模型·自然语言处理·nlp
fanstuck2 小时前
2025 年高教社杯全国大学生数学建模竞赛C 题 NIPT 的时点选择与胎儿的异常判定详解(一)
人工智能·目标检测·数学建模·数据挖掘·aigc