STORM论文阅读笔记

  • 这是篇NIPS2023的 world model 论文
  • 文章提出,WM的误差会在训练过程中积累从而影响policy的训练,向WM中加噪声可以改善这一点。
  • 其他的流程和IRIS差不多,差别在以下几点:
    • image encoder,IRIS用的VQVAE, 本文用的是VAE,用VAE的采样方式来生成zt,从而为zt加噪声。
    • sequence model,IRIS用GPT循环输出image的每个token,本文直接用MLP把生成的 z t z_t zt 和动作 a t a_t at 输出成一个token,这样GPT只需要在时序上循环而不需要在同一个 t 内的不同 token 上循环。换句话说,IRIS的一个图片是GPT中的16个token,而STORM的一个图片是GPT中的一个token。
    • hidden state,IRIS直接从 z 1 : t z_{1:t} z1:t 预测 z t + 1 z_{t+1} zt+1,相当于RNN,而 STORM先从 z 1 : t z_{1:t} z1:t 预测 h t h_{t} ht,也就是说上面的sequence model输出的不是 z ,而是hidden state h,再用一个MLP从 h t h_t ht来预测 z t + 1 z_{t+1} zt+1,这点是用了Dreamerv3的思路
    • loss function,用的也是dreamerv3的loss function
  • 完整公式和损失函数如下:



Agent learning

  • 强化学习的部分和dreamerv3一样,不过强调了下value函数用的是移动平均:
相关推荐
wangyue411 分钟前
c# 深度模型入门
深度学习
川石课堂软件测试25 分钟前
性能测试|docker容器下搭建JMeter+Grafana+Influxdb监控可视化平台
运维·javascript·深度学习·jmeter·docker·容器·grafana
985小水博一枚呀33 分钟前
【深度学习滑坡制图|论文解读3】基于融合CNN-Transformer网络和深度迁移学习的遥感影像滑坡制图方法
人工智能·深度学习·神经网络·cnn·transformer
985小水博一枚呀38 分钟前
【深度学习滑坡制图|论文解读2】基于融合CNN-Transformer网络和深度迁移学习的遥感影像滑坡制图方法
人工智能·深度学习·神经网络·cnn·transformer·迁移学习
咔叽布吉1 小时前
【论文阅读笔记】CamoFormer: Masked Separable Attention for Camouflaged Object Detection
论文阅读·笔记·目标检测
johnny2331 小时前
《大模型应用开发极简入门》笔记
笔记·chatgpt
亦枫Leonlew1 小时前
微积分复习笔记 Calculus Volume 1 - 4.7 Applied Optimization Problems
笔记·数学·微积分·1024程序员节
小肥象不是小飞象1 小时前
(六千字心得笔记)零基础C语言入门第八课——函数(上)
c语言·开发语言·笔记·1024程序员节
星LZX1 小时前
WireShark入门学习笔记
笔记·学习·wireshark
深度学习实战训练营2 小时前
基于CNN-RNN的影像报告生成
人工智能·深度学习