STORM论文阅读笔记

  • 这是篇NIPS2023的 world model 论文
  • 文章提出,WM的误差会在训练过程中积累从而影响policy的训练,向WM中加噪声可以改善这一点。
  • 其他的流程和IRIS差不多,差别在以下几点:
    • image encoder,IRIS用的VQVAE, 本文用的是VAE,用VAE的采样方式来生成zt,从而为zt加噪声。
    • sequence model,IRIS用GPT循环输出image的每个token,本文直接用MLP把生成的 z t z_t zt 和动作 a t a_t at 输出成一个token,这样GPT只需要在时序上循环而不需要在同一个 t 内的不同 token 上循环。换句话说,IRIS的一个图片是GPT中的16个token,而STORM的一个图片是GPT中的一个token。
    • hidden state,IRIS直接从 z 1 : t z_{1:t} z1:t 预测 z t + 1 z_{t+1} zt+1,相当于RNN,而 STORM先从 z 1 : t z_{1:t} z1:t 预测 h t h_{t} ht,也就是说上面的sequence model输出的不是 z ,而是hidden state h,再用一个MLP从 h t h_t ht来预测 z t + 1 z_{t+1} zt+1,这点是用了Dreamerv3的思路
    • loss function,用的也是dreamerv3的loss function
  • 完整公式和损失函数如下:



Agent learning

  • 强化学习的部分和dreamerv3一样,不过强调了下value函数用的是移动平均:
相关推荐
wanzhong23337 小时前
CUDA学习5-矩阵乘法(共享内存版)
深度学习·学习·算法·cuda·高性能计算
Hcoco_me7 小时前
大模型面试题19:梯度消失&梯度爆炸 纯白话文版
人工智能·rnn·深度学习·自然语言处理·word2vec
是店小二呀8 小时前
在 AtomGit 昇腾 Atlas 800T上解锁 SGLang:零成本打造高性能推理服务
人工智能·pytorch·深度学习·npu
万事可爱^8 小时前
GitCode+昇腾部署Rnj-1模型实践教程
人工智能·深度学习·语言模型·gitcode·本地部署·昇腾npu
高洁018 小时前
图神经网络初探(2)
人工智能·深度学习·算法·机器学习·transformer
iconball9 小时前
个人用云计算学习笔记 --24 虚拟化、KVM 基础使用与热迁移实验、VMware ESXi笔记
运维·笔记·学习·云计算
祝余Eleanor9 小时前
Day 51 神经网络调参指南
深度学习·神经网络·机器学习
算法熔炉9 小时前
深度学习面试八股文(4)—— transformer专题
深度学习·面试·transformer
软件算法开发9 小时前
基于山羚羊优化的LSTM深度学习网络模型(MGO-LSTM)的一维时间序列预测算法matlab仿真
深度学习·matlab·lstm·一维时间序列预测·山羚羊优化·mgo-lstm
LaughingZhu9 小时前
Product Hunt 每日热榜 | 2025-12-26
人工智能·经验分享·深度学习·神经网络·产品运营