STORM论文阅读笔记

  • 这是篇NIPS2023的 world model 论文
  • 文章提出,WM的误差会在训练过程中积累从而影响policy的训练,向WM中加噪声可以改善这一点。
  • 其他的流程和IRIS差不多,差别在以下几点:
    • image encoder,IRIS用的VQVAE, 本文用的是VAE,用VAE的采样方式来生成zt,从而为zt加噪声。
    • sequence model,IRIS用GPT循环输出image的每个token,本文直接用MLP把生成的 z t z_t zt 和动作 a t a_t at 输出成一个token,这样GPT只需要在时序上循环而不需要在同一个 t 内的不同 token 上循环。换句话说,IRIS的一个图片是GPT中的16个token,而STORM的一个图片是GPT中的一个token。
    • hidden state,IRIS直接从 z 1 : t z_{1:t} z1:t 预测 z t + 1 z_{t+1} zt+1,相当于RNN,而 STORM先从 z 1 : t z_{1:t} z1:t 预测 h t h_{t} ht,也就是说上面的sequence model输出的不是 z ,而是hidden state h,再用一个MLP从 h t h_t ht来预测 z t + 1 z_{t+1} zt+1,这点是用了Dreamerv3的思路
    • loss function,用的也是dreamerv3的loss function
  • 完整公式和损失函数如下:



Agent learning

  • 强化学习的部分和dreamerv3一样,不过强调了下value函数用的是移动平均:
相关推荐
热心不起来的市民小周9 分钟前
测测你的牌:基于 MobileNetV2 的车牌内容检测
python·深度学习·计算机视觉
四谎真好看22 分钟前
JavaWeb 学习笔记(Day02)之Vue
笔记·学习·vue·学习笔记·javaweb
南屿欣风29 分钟前
Sentinel 资源异常处理优先级笔记
spring boot·笔记·sentinel
空山新雨后、30 分钟前
Masked AutoEncoder(MAE)详解:高 Mask 率如何造就强视觉表征
人工智能·深度学习·chatgpt·多模态
Francek Chen37 分钟前
【自然语言处理】应用06:针对序列级和词元级应用微调BERT
人工智能·pytorch·深度学习·自然语言处理·bert
ekkoalex37 分钟前
强化学习中参数的设置
人工智能·深度学习·transformer
淬炼之火1 小时前
笔记:Contrastive Object-Aware Fusion
图像处理·笔记·计算机视觉·多模态·图像融合
乐观主义现代人1 小时前
redis 源码学习笔记
redis·笔记·学习
YJlio1 小时前
Registry Usage (RU) 学习笔记(15.5):注册表内存占用体检与 Hive 体量分析
服务器·windows·笔记·python·学习·tcp/ip·django
datamonday1 小时前
[EAI-037] π0.6* 基于RECAP方法与优势调节的自进化VLA机器人模型
人工智能·深度学习·机器人·具身智能·vla