STORM论文阅读笔记

  • 这是篇NIPS2023的 world model 论文
  • 文章提出,WM的误差会在训练过程中积累从而影响policy的训练,向WM中加噪声可以改善这一点。
  • 其他的流程和IRIS差不多,差别在以下几点:
    • image encoder,IRIS用的VQVAE, 本文用的是VAE,用VAE的采样方式来生成zt,从而为zt加噪声。
    • sequence model,IRIS用GPT循环输出image的每个token,本文直接用MLP把生成的 z t z_t zt 和动作 a t a_t at 输出成一个token,这样GPT只需要在时序上循环而不需要在同一个 t 内的不同 token 上循环。换句话说,IRIS的一个图片是GPT中的16个token,而STORM的一个图片是GPT中的一个token。
    • hidden state,IRIS直接从 z 1 : t z_{1:t} z1:t 预测 z t + 1 z_{t+1} zt+1,相当于RNN,而 STORM先从 z 1 : t z_{1:t} z1:t 预测 h t h_{t} ht,也就是说上面的sequence model输出的不是 z ,而是hidden state h,再用一个MLP从 h t h_t ht来预测 z t + 1 z_{t+1} zt+1,这点是用了Dreamerv3的思路
    • loss function,用的也是dreamerv3的loss function
  • 完整公式和损失函数如下:



Agent learning

  • 强化学习的部分和dreamerv3一样,不过强调了下value函数用的是移动平均:
相关推荐
saoys12 小时前
Opencv 学习笔记:图像掩膜操作(精准提取指定区域像素)
笔记·opencv·学习
MM_MS13 小时前
Halcon变量控制类型、数据类型转换、字符串格式化、元组操作
开发语言·人工智能·深度学习·算法·目标检测·计算机视觉·视觉检测
电子小白12314 小时前
第13期PCB layout工程师初级培训-1-EDA软件的通用设置
笔记·嵌入式硬件·学习·pcb·layout
齐齐大魔王14 小时前
Pascal VOC 数据集
人工智能·深度学习·数据集·voc
EEPI14 小时前
【论文阅读】Igniting VLMs toward the Embodied Space
论文阅读
Hcoco_me15 小时前
RNN(循环神经网络)
人工智能·rnn·深度学习
clorisqqq15 小时前
人工智能现代方法笔记 第1章 绪论(1/2)
人工智能·笔记
charlie11451419115 小时前
嵌入式现代C++教程: 构造函数优化:初始化列表 vs 成员赋值
开发语言·c++·笔记·学习·嵌入式·现代c++
wdfk_prog16 小时前
[Linux]学习笔记系列 -- [fs]seq_file
linux·笔记·学习
liuchangng16 小时前
Open-AutoGLM部署运行笔记
笔记