Flink 窗口函数

一、Window 概述

Flink 流式计算是一种被设计用于处理无限数据集的数据处理引擎,而无限数据集是指一种不断增长的本质上无限的数据集,而 window 是一种切割无线数据为有限块进行处理的手段。

二、Window 分类

Window 可以分为两类:

  • CountWindow(计数窗口):按照指定的数据条数生成一个Window,与时间无关;
  • TimeWindow(事件窗口):按照时间生成 Window;

对于TimeWindow ,可以根据窗口实现原理的不同分成三类:

  • 滚动窗口(Tumbling Window)
  • 滑动窗口(Sliding Window)
  • 会话窗口(Session Window)

2.1、滚动窗口(Tumbling Window)

将数据依据固定的窗口长度对数据进行切片;

特点:时间对其、窗口长度固定、没有重叠;

适用场景:适合做 BI 统计(每个时间段的聚合计算)。

2.2、滑动窗口(Sliding Window)

滑动窗口是固定的窗口的更广义的一种形式,滑动窗口由固定的窗口长度和滑动间隔组成;

特点:时间对齐、窗口长度固定,可以重叠;

适用场景:对最近一个时间段内的统计(求某接口最近 5min 的失败率来决定是否要报警)。

2.3、会话窗口(Session Window)

由一系列事件组合一个指定时间长度的 timeout 间隙组成,类似于 web 应用的 session,也就是一段时间没有接收到新数据就会生成新的窗口。

特点:时间无法对齐;

session 窗口分配器通过 session 活动来对元素进行分组,session 窗口跟滚动窗口和滑动窗口相比,不会有重叠和固定的开始时间和结束时间的情况,相反,当它在一个固定的时间周期内不在收到元素,即非活动间隔产生,那么这个窗口就会关闭。一个 session 窗口通过一个 session 间隔来配置,这个 session间隔定义了非活跃周期的长度,当这个非活跃周期产生,那么当前的session将关闭并且后续的元素将被分配到新的 session 窗口中去。

三、Window API

3.1、CountWindow

3.1.1、滚动窗口

默认的 CountWindow 是一个滚动窗口,只需要指定窗口大小即可,当元素数量达到窗口大小时,就会触发窗口的执行。

scala 复制代码
val minTempPerWindow: DataStream[(String, Double)] = dataStream
.map(r => (r.id, r.temperature))
.keyBy(_._1)
.countWindow(5)
.reduce((r1, r2) => (r1._1, r1._2.max(r2._2)))

3.1.2、滑动窗口

滑动窗口和滚动窗口的函数名是完全一致的,只是在传参数时需要传入两个参数,一个是 window_size,一个是 sliding_size。

下面代码中的 sliding_size 设置为了 2,也就是说,每收到两个相同 key 的数据就计算一次,每一次计算的 window 范围是 10 个元素。

scala 复制代码
val keyedStream: KeyedStream[(String, Int), Tuple] = dataStream.map(r => (r.id, r.temperature)).keyBy(0)
//每当某一个 key 的个数达到 2 的时候,触发计算,计算最近该 key 最近 10 个元素的内容
val windowedStream: WindowedStream[(String, Int), Tuple, GlobalWindow] = keyedStream.countWindow(10,2)
val sumDstream: DataStream[(String, Int)] = windowedStream.sum(1)

3.2、TimeWindow

3.1.1、滚动窗口

Flink 默认的时间窗口根据 Processing Time 进行窗口的划分,将 Flink 获取到的数据根据进入 Flink 的时间划分到不同的窗口中。

scala 复制代码
val minTempPerWindow = dataStream
.map(r => (r.id, r.temperature))
.keyBy(_._1)
.timeWindow(Time.seconds(15))
//或者指定TumblingEventTimeWindows
//.window(TumblingEventTimeWindows.of(Time.seconds(15)))
.reduce((r1, r2) => (r1._1, r1._2.min(r2._2)))

3.1.2、滑动窗口

滑动窗口和滚动窗口的函数名是完全一致的,只是在传参数时需要传入两个参数,一个是 window_size,一个是 sliding_size。

下面代码中的 sliding_size 设置为了 5s,也就是说,每 5s 就计算输出结果一次,每一次计算的 window 范围是 15s 内的所有元素。

scala 复制代码
val minTempPerWindow: DataStream[(String, Double)] = dataStream
.map(r => (r.id, r.temperature))
.keyBy(_._1)
.timeWindow(Time.seconds(15), Time.seconds(5))
//或者指定SlidingEventTimeWindows
//.window(SlidingEventTimeWindows.of(Time.seconds(15),Time.seconds(5)
.reduce((r1, r2) => (r1._1, r1._2.min(r2._2))))

3.1.2、会话窗口

scala 复制代码
val minTempPerWindow: DataStream[(String, Double)] = dataStream
.map(r => (r.id, r.temperature))
.keyBy(_._1)
.window(EventTimeSessionWindows.withGap(Time.seconds(10)))
.reduce((r1, r2) => (r1._1, r1._2.min(r2._2))))
相关推荐
Doker 多克7 小时前
Flink CDC —部署模式
大数据·flink
酷爱码8 小时前
Spring Boot 整合 Apache Flink 的详细过程
spring boot·flink·apache
问道飞鱼8 小时前
Flink 高可用集群部署指南
flink·部署·批处理·流式批处理
渣渣盟1 天前
基于Scala实现Flink的三种基本时间窗口操作
开发语言·flink·scala
zhojiew1 天前
关于akka官方quickstart示例程序(scala)的记录
后端·scala
网安INF1 天前
CVE-2020-17519源码分析与漏洞复现(Flink 任意文件读取)
java·web安全·网络安全·flink·漏洞
一叶知秋哈1 天前
Java应用Flink CDC监听MySQL数据变动内容输出到控制台
java·mysql·flink
代码匠心1 天前
从零开始学Flink:揭开实时计算的神秘面纱
java·大数据·后端·flink
Apache Flink2 天前
Flink在B站的大规模云原生实践
大数据·云原生·flink
lifallen2 天前
Flink checkpoint
java·大数据·算法·flink