如何正确理解flink 消费kafka时的watermark

案例1

在source 层面用全量数据watermark 对后面的窗口计算是否有影响?

bash 复制代码
KafkaSource<Event> source = KafkaSource.<Event>builder()
    .setWatermarkStrategy(
        WatermarkStrategy
            .forBoundedOutOfOrderness(Duration.ofSeconds(5))
            .withTimestampAssigner(e -> e.eventTime)
    )  // 全量WM:order+click污染!
    .build();

tream.filter(e -> e.type.equals("order"))  
    .window(...).sum();  

tream.filter(e -> e.type.equals("click"))  
    .window(...).sum();  
分析

10s(order) → 12s(click) → 15s(order) → 18s(click) → 20s(order)

全是数据生成的watermark是20-5=15

order 数据生成的watermark是 20-5=15

click 数据生成的watermark是 18-5=13

假设窗口大小是10s,现在又来了一条数据25s(order)

这里会导致窗口生成的watermark是25-5=20,刚好可以触发窗口计算了,可实际上可click这个数据流还有部分数据未到达,比如19(click) 就会漏算。所以这样生成watermark会有问题

案例2

上面的问题可以通过filter 精确分流,然后再生成watermark

bash 复制代码
public class WatermarkMasterTemplate {
    public static void main(String[] args) {
        // 1. Source:无WM(零污染)
        KafkaSource<Event> source = KafkaSource.builder()
            .build();
        
        // 2. 业务分流 + 独立WM(最精确)
        stream.filter(e -> e.type.equals("order"))
            .assignTimestampsAndWatermarks(preciseWM("order"))
            .window(...).print("ORDER");
            
        stream.filter(e -> e.type.equals("click")) 
            .assignTimestampsAndWatermarks(preciseWM("click"))
            .window(...).print("CLICK");
    }
    
    static WatermarkStrategy<Event> preciseWM(String type) {
        return WatermarkStrategy
            .forBoundedOutOfOrderness(Duration.ofSeconds(5))
            .withTimestampAssigner(e -> e.eventTime);
    }
}
分析

10s(order) → 12s(click) → 15s(order) → 18s(click) → 20s(order)

order 数据生成的watermark是 20-5=15

click 数据生成的watermark是 18-5=13

这样不同流生成的watemark 生成的流是精确的

案例3

如果先加一个rebance 操作,是否会影响per-partition watermark 语义

bash 复制代码
public class WatermarkMasterTemplate {
    public static void main(String[] args) {
        // 1. Source:无WM(零污染)
        KafkaSource<Event> source = KafkaSource.builder()
            .build();
      source.stream()
            .rebalance()
            .assignTimestampsAndWatermarks(preciseWM("order"))
            .window(...)
            .sum()
            .print("ORDER");
    }
    
    static WatermarkStrategy<Event> preciseWM(String type) {
        return WatermarkStrategy
            .forBoundedOutOfOrderness(Duration.ofSeconds(5))
            .withTimestampAssigner(e -> e.eventTime);
    }
}
分析

分区

partition a 10s(order) → 11s(click) → 14s(order) → 16s(click) → 18s(order)

partition b 12s(order) → 13s(click) → 15s(order) → 17s(click) → 19s(order)

但是如果是这样rebalance的话,会打乱单分区的watermark 的递增性,导致watermark 生成不精确

相关推荐
lucky670721 分钟前
Spring Boot集成Kafka:最佳实践与详细指南
spring boot·kafka·linq
wending-Y1 小时前
记录一次排查Flink一直重启的问题
大数据·flink
Hello.Reader1 小时前
Flink 对接 Azure Blob Storage / ADLS Gen2:wasb:// 与 abfs://(读写、Checkpoint、插件与认证)
flink·flask·azure
袁煦丞 cpolar内网穿透实验室2 小时前
远程调试内网 Kafka 不再求运维!cpolar 内网穿透实验室第 791 个成功挑战
运维·分布式·kafka·远程工作·内网穿透·cpolar
岁岁种桃花儿2 小时前
CentOS7 彻底卸载所有JDK/JRE + 重新安装JDK8(实操完整版,解决kafka/jps报错)
java·开发语言·kafka
Hello.Reader2 小时前
Flink 文件系统通用配置默认文件系统与连接数限制实战
vue.js·flink·npm
Hello.Reader8 小时前
Flink Plugins 机制隔离 ClassLoader、目录结构、FileSystem/Metric Reporter 实战与避坑
大数据·flink
Hello.Reader8 小时前
Flink JobManager 高可用(High Availability)原理、组件、数据生命周期与 JobResultStore 实战
大数据·flink
Hello.Reader8 小时前
Flink 对接阿里云 OSS(Object Storage Service)读写、Checkpoint、插件安装与配置模板
大数据·阿里云·flink
闻哥8 小时前
Kafka高吞吐量核心揭秘:四大技术架构深度解析
java·jvm·面试·kafka·rabbitmq·springboot