Kaggle比赛:成人人口收入分类

拿到数据首先查看数据信息和描述

python 复制代码
import pandas as pd  
import seaborn as sns  
import matplotlib.pyplot as plt  
  
# 加载数据(保留原路径,但在实际应用中建议使用相对路径或环境变量)  
data = pd.read_csv(r"C:\Users\11794\Desktop\收入分类\training.csv", encoding='utf-8', encoding_errors='replace')  
  
# 查看数据信息和描述  
data.info()

选择数值列进行相关性分析计算相关性矩阵绘制热力图

python 复制代码
import pandas as pd  
import seaborn as sns  
import matplotlib.pyplot as plt  
  
# 加载数据(保留原路径,但在实际应用中建议使用相对路径或环境变量)  
data = pd.read_csv(r"C:\Users\11794\Desktop\收入分类\training.csv", encoding='utf-8', encoding_errors='replace')  
  
# 绘制热力图  
# 选择数值列进行相关性分析  
numerical_columns = data.select_dtypes(include=['int64', 'float64']).columns
# 计算相关性矩阵  
correlation_matrix = data[numerical_columns].corr()  
# 绘制热力图  
plt.figure(figsize=(12, 10))  
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', linewidths=0.5)  
plt.title('Correlation Heatmap')  
plt.savefig('correlation_heatmap.png', bbox_inches='tight')  # 保存热力图到当前目录

随后就是数据分割 ,创建并训练模型,这里我选择用决策树分类器

python 复制代码
import pandas as pd    
from sklearn.model_selection import train_test_split    
from sklearn.tree import DecisionTreeClassifier  # 导入决策树分类器  
from sklearn.metrics import classification_report    
import matplotlib.pyplot as plt    
from sklearn.metrics import roc_curve, auc  
import numpy as np  
  
# 加载数据(假设数据保存在CSV文件中)    
data = pd.read_csv(r"C:\Users\11794\Desktop\收入分类\training.csv", encoding='utf-8', encoding_errors='replace')   
test_data = pd.read_csv(r"C:\Users\11794\Desktop\收入分类\testing.csv", encoding='utf-8', encoding_errors='replace')    
  
# 选择特征和目标变量    
X = data.drop(['id', 'Class'], axis=1)   
y = data['Class']  # 目标变量是'Class'列    
    
# 数据分割    
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.01, random_state=42)    
    
# 创建并训练模型    
# 使用决策树分类器  
model = DecisionTreeClassifier(max_depth=30, random_state=42)  # 修改此行  
model.fit(X_train, y_train)    
   
      
# 预测测试集并评估模型    
y_pred = model.predict(X_test)    
print(classification_report(y_test, y_pred))  # 打印分类报告  
  
# 选择test_data中的特征列    
test_X = test_data.drop(['id'], axis=1)    
# 使用训练好的模型进行预测    
test_y_pred = model.predict(test_X)

准确率直接1.0 我没在验证集验证,比赛的文件也分享在csdn里了。

相关推荐
子燕若水44 分钟前
Unreal Engine 5中的AI知识
人工智能
极限实验室2 小时前
Coco AI 实战(一):Coco Server Linux 平台部署
人工智能
杨过过儿2 小时前
【学习笔记】4.1 什么是 LLM
人工智能
巴伦是只猫2 小时前
【机器学习笔记Ⅰ】13 正则化代价函数
人工智能·笔记·机器学习
大千AI助手2 小时前
DTW模版匹配:弹性对齐的时间序列相似度度量算法
人工智能·算法·机器学习·数据挖掘·模版匹配·dtw模版匹配
AI生存日记2 小时前
百度文心大模型 4.5 系列全面开源 英特尔同步支持端侧部署
人工智能·百度·开源·open ai大模型
LCG元3 小时前
自动驾驶感知模块的多模态数据融合:时序同步与空间对齐的框架解析
人工智能·机器学习·自动驾驶
why技术3 小时前
Stack Overflow,轰然倒下!
前端·人工智能·后端
彭祥.3 小时前
Jetson边缘计算主板:Ubuntu 环境配置 CUDA 与 cudNN 推理环境 + OpenCV 与 C++ 进行目标分类
c++·opencv·分类