Kaggle比赛:成人人口收入分类

拿到数据首先查看数据信息和描述

python 复制代码
import pandas as pd  
import seaborn as sns  
import matplotlib.pyplot as plt  
  
# 加载数据(保留原路径,但在实际应用中建议使用相对路径或环境变量)  
data = pd.read_csv(r"C:\Users\11794\Desktop\收入分类\training.csv", encoding='utf-8', encoding_errors='replace')  
  
# 查看数据信息和描述  
data.info()

选择数值列进行相关性分析计算相关性矩阵绘制热力图

python 复制代码
import pandas as pd  
import seaborn as sns  
import matplotlib.pyplot as plt  
  
# 加载数据(保留原路径,但在实际应用中建议使用相对路径或环境变量)  
data = pd.read_csv(r"C:\Users\11794\Desktop\收入分类\training.csv", encoding='utf-8', encoding_errors='replace')  
  
# 绘制热力图  
# 选择数值列进行相关性分析  
numerical_columns = data.select_dtypes(include=['int64', 'float64']).columns
# 计算相关性矩阵  
correlation_matrix = data[numerical_columns].corr()  
# 绘制热力图  
plt.figure(figsize=(12, 10))  
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', linewidths=0.5)  
plt.title('Correlation Heatmap')  
plt.savefig('correlation_heatmap.png', bbox_inches='tight')  # 保存热力图到当前目录

随后就是数据分割 ,创建并训练模型,这里我选择用决策树分类器

python 复制代码
import pandas as pd    
from sklearn.model_selection import train_test_split    
from sklearn.tree import DecisionTreeClassifier  # 导入决策树分类器  
from sklearn.metrics import classification_report    
import matplotlib.pyplot as plt    
from sklearn.metrics import roc_curve, auc  
import numpy as np  
  
# 加载数据(假设数据保存在CSV文件中)    
data = pd.read_csv(r"C:\Users\11794\Desktop\收入分类\training.csv", encoding='utf-8', encoding_errors='replace')   
test_data = pd.read_csv(r"C:\Users\11794\Desktop\收入分类\testing.csv", encoding='utf-8', encoding_errors='replace')    
  
# 选择特征和目标变量    
X = data.drop(['id', 'Class'], axis=1)   
y = data['Class']  # 目标变量是'Class'列    
    
# 数据分割    
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.01, random_state=42)    
    
# 创建并训练模型    
# 使用决策树分类器  
model = DecisionTreeClassifier(max_depth=30, random_state=42)  # 修改此行  
model.fit(X_train, y_train)    
   
      
# 预测测试集并评估模型    
y_pred = model.predict(X_test)    
print(classification_report(y_test, y_pred))  # 打印分类报告  
  
# 选择test_data中的特征列    
test_X = test_data.drop(['id'], axis=1)    
# 使用训练好的模型进行预测    
test_y_pred = model.predict(test_X)

准确率直接1.0 我没在验证集验证,比赛的文件也分享在csdn里了。

相关推荐
老夫的码又出BUG了12 分钟前
预测式AI与生成式AI
人工智能·科技·ai
AKAMAI20 分钟前
AI 边缘计算:决胜未来
人工智能·云计算·边缘计算
flex888826 分钟前
输入一个故事主题,使用大语言模型生成故事视频【视频中包含大模型生成的图片、故事内容,以及音频和字幕信息】
人工智能·语言模型·自然语言处理
TTGGGFF34 分钟前
人工智能:大语言模型或为死胡同?拆解AI发展的底层逻辑、争议与未来方向
大数据·人工智能·语言模型
张艾拉 Fun AI Everyday36 分钟前
从 ChatGPT 到 OpenEvidence:AI 医疗的正确打开方式
人工智能·chatgpt
mwq301231 小时前
位置编码的技术演进线路:从绝对到相对,再到几何一致性
人工智能
mwq301232 小时前
外推性-位置编码的阿喀琉斯之踵
人工智能
DP+GISer2 小时前
基于站点数据进行遥感机器学习参数反演-以XGBOOST反演LST为例(附带数据与代码)试读
人工智能·python·机器学习·遥感与机器学习
boonya2 小时前
Langchain 和LangGraph 为何是AI智能体开发的核心技术
人工智能·langchain
元宇宙时间2 小时前
DID联盟:Web3数字主权基础设施的战略构建
人工智能·web3·区块链